keras 卷积网络识别CIFAR-10图像

这篇博客介绍了如何利用keras构建2次和3次卷积运算的神经网络,应用于CIFAR-10图像识别任务,并提到了训练周期的概念。
摘要由CSDN通过智能技术生成
import tensorflow as tf
import tensorflow.keras
from tensorflow.keras.datasets import cifar10
import numpy as np
from tensorflow.keras.utils import to_categorical
np.random.seed(10)
(x_img_train, y_label_train), \
(x_img_test, y_label_test) = cifar10.load_data()
x_img_train_normalize=x_img_train.astype('float32')/255.0
x_img_test_normalize=x_img_test.astype('float32')/255.0
y_label_train_onehot =tf.keras.utils. to_categorical(y_label_train)
y_label_test_onehot = tf.keras.utils.to_categorical(y_label_test)

这是建立一个2次卷积运算的神经网络

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D,Dense,Dropout,Flatten,MaxPooling2D,Activation,ZeroPadding2D
model = Sequential()
model.add(Conv2D(filters=32,
               kernel_size=(3,3),
                 padding='same',
                 input_shape=(32,32,3),
               activation='relu'))
model.add(Dropout(rate=0.25))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters=64,
               kernel_size=(3,3),
                 padding='same',
               activation='relu'))
model.add(Dropout(0.25))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dropout(rate=0.25))
model.add(Dense(1024,activation='relu'
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值