【4.5 扩展欧几里得算法详解】

更好的阅读体验 \color{red}{更好的阅读体验} 更好的阅读体验

4.5 扩展欧几里得算法

思想

  • 欧几里得算法: g c d ( a , b ) = g c d ( b , a % b ) gcd(a,b)=gcd(b,a\%b) gcd(a,b)=gcd(b,a%b),特别的 g c d ( a , 0 ) = a gcd(a,0)=a gcd(a,0)=a

  • 裴蜀定理:对于任意正整数 a , b a,b a,b,一定存在非零的 x , y x,y x,y,使得 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)

  • { b = 0 时 : { g c d ( a , b ) = a a x + b y = g c d ( a , b ) ⇒ { x = 1 y = 0 b   ! = 0 时: { ① 设  a x + b y = g c d ( a , b ) = d ∵ 由欧几里得算法可知: g c d ( a , b ) = g c d ( b , a % b ) = d ∴ 由裴蜀定理得: b x ′ + ( a % b ) y ′ = d 又 ∵ a x + b y = d ∴ 联立 { a x + b y = d b x ′ + ( a % b ) y ′ = d a % b = a − ⌊ a b ⌋ b ⇒ { x = y ′ y = x ′ − ⌊ a b ⌋ y ′ ② 设 a ′ = b , b ′ = a % b ∴ g c d ( b , a % b ) = g c d ( a ′ , b ′ ) = d ∵ g c d ( a ′ , b ′ ) = g c d ( b ′ , a ′ % b ′ ) = d ∴ b ′ x ′ ′ + a ′ % b ′ y ′ ′ = d 又 ∵ b x ′ + ( a % b ) y ′ = d ∴ 联立 { b x ′ + ( a % b ) y ′ = d b ′ x ′ ′ + a ′ % b ′ y ′ ′ = d a ′ % b ′ = a ′ − ⌊ a ′ b ′ ⌋ b ′ ⇒ { x ′ = y ′ ′ y ′ = x ′ ′ − ⌊ a ′ b ′ ⌋ y ′ ′ ③ 设 a ′ ′ = b ′ , b ′ ′ = a ′ % b ′ … … 直到 b = 0 时,联立解得 { x i = 1 y i = 0 然后逐步返回每一次联立所得的结果 { x i − 1 = y i y i − 1 = x i − ⌊ a i b i ⌋ y i 最后返回得到 x 和 y 的值 \begin{cases} b=0时:\begin{cases} gcd(a,b)=a\\ax+by=gcd(a,b)\\ \end{cases}\Rightarrow\begin{cases}x=1\\y=0\end{cases} \\ \\ \\ \\ \\ b~ != 0时: \begin{cases} \begin{aligned} ①&设~ax+by=gcd(a,b)=d\\ &\because 由欧几里得算法可知:gcd(a,b)=gcd(b,a\%b)=d\\ &\therefore 由裴蜀定理得:b{x}'+(a\%b){y}'=d\\ 又&\because ax+by=d\\ &\therefore联立 \begin{cases} ax+by=d\\b{x}'+(a\%b){y}'=d\\a\%b=a-\lfloor\frac{a}{b}\rfloor b \end{cases}\Rightarrow\begin{cases}x={y}'\\y={x}'-\lfloor\frac{a}{b}\rfloor{y}'\end{cases}\\ ②&设{a}'=b,{b}'=a\%b\\ &\therefore gcd(b,a\%b)=gcd({a}',{b}')=d\\ &\because gcd({a}',{b}')=gcd({b}',{a}'\%{b}')=d\\ &\therefore {b}'{x}''+{a}'\%{b}'{y}''=d\\ 又&\because b{x}'+(a\%b){y}'=d\\ &\therefore联立\begin{cases} b{x}'+(a\%b){y}'=d\\{b}'{x}''+{a}'\%{b}'{y}''=d\\{a}'\%{b}'={a}'-\lfloor\frac{{a}'}{{b}'}\rfloor{b}' \end{cases}\Rightarrow\begin{cases}{x}'={y}''\\{y}'={x}''-\lfloor\frac{{a}'}{{b}'}\rfloor{y}'' \end{cases}\\ ③&设{a}''={b}',{b}''={a}'\%{b}'\\ &\dots\\ &\dots\\ &直到b=0时,联立解得\begin{cases}{x}^i=1\\{y}^i=0\end{cases}\\ &然后逐步返回每一次联立所得的结果\begin{cases}{x}^{i-1}={y}^{i}\\{y}^{i-1}={x}^{i}-\lfloor\frac{{a}^{i}}{{b}^i}\rfloor{y}^{i} &最后返回得到x和y的值 \end{cases}\\ \end{aligned} \end{cases} \end{cases} b=0:{gcd(a,b)=aax+by=gcd(a,b){x=1y=0b !=0时:  ax+by=gcd(a,b)=d由欧几里得算法可知:gcd(a,b)=gcd(b,a%b)=d由裴蜀定理得:bx+(a%b)y=dax+by=d联立 ax+by=dbx+(a%b)y=da%b=abab{x=yy=xbaya=b,b=a%bgcd(b,a%b)=gcd(a,b)=dgcd(a,b)=gcd(b,a%b)=dbx′′+a%by′′=dbx+(a%b)y=d联立 bx+(a%b)y=dbx′′+a%by′′=da%b=abab{x=y′′y=x′′bay′′a′′=b,b′′=a%b直到b=0时,联立解得{xi=1yi=0然后逐步返回每一次联立所得的结果{xi1=yiyi1=xibiaiyi最后返回得到xy的值

注意

  • 当方程符合 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)的形式时,才可以用扩展欧几里得算法求解 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)

4.5.1 欧几里得算法的推论

  • 可以进一步求解任意方程 a x + b y = n ax+by=n ax+by=n,得到一个整数解

  • { ( 1 )   判断方程 a x + b y = n 是否有整数解,有解的条件为: g c d ( a , b ) 可以整除 n ( 2 )   用扩展欧几里得算法求 a x + b y = g c d ( a , b ) 得到一个解 ( x 0 , y 0 ) ( 3 )   在 a x 0 + b y 0 = g c d ( a , b ) 两边同时乘 n g c d ( a , b ) ⇒ a x 0 n g c d ( a , b ) + b y 0 n g c d ( a , b ) = n ( 4 )   对照 a x + b y = n 可知该方程的一个解为 ( x ′ , y ′ ) ,其中 { x ′ = x 0 n g c d ( a , b ) y ′ = y 0 n g c d ( a , b ) \begin{aligned} \begin{cases} &(1)~~判断方程ax+by=n是否有整数解,有解的条件为:gcd(a,b)可以整除n\\ &(2)~~用扩展欧几里得算法求ax+by=gcd(a,b)得到一个解(x_0,y_0)\\ &(3)~~在ax_0+by_0=gcd(a,b)两边同时乘\frac{n}{gcd(a,b)}\Rightarrow\frac{ax_0n}{gcd(a,b)}+\frac{by_0n}{gcd(a,b)}=n\\ &(4)~~对照ax+by=n可知该方程的一个解为({x}',{y}'),其中\begin{cases}{x}'=\frac{x_0n}{gcd(a,b)}\\{y}'=\frac{y_0n}{gcd(a,b)} \end{cases} \end{cases} \end{aligned} (1)  判断方程ax+by=n是否有整数解,有解的条件为:gcd(a,b)可以整除n(2)  用扩展欧几里得算法求ax+by=gcd(a,b)得到一个解(x0,y0)(3)  ax0+by0=gcd(a,b)两边同时乘gcd(a,b)ngcd(a,b)ax0n+gcd(a,b)by0n=n(4)  对照ax+by=n可知该方程的一个解为(x,y),其中{x=gcd(a,b)x0ny=gcd(a,b)y0n

模板

void exgcd(int a,int b,int &x,int &y){
    
    if(!b){  //若b=0时
        x=1,y=0;
        return ;
    }
    else{  //b!=0时
        exgcd(b,a%b,x,y);  //递归到下一层
        int t=x;  //返回时执行
        x=y;
        y=t-a/b*y;
    }
    
}

例题 877. 扩展欧几里得算法

原题链接

描述

给定 n 对正整数 ai,bi,对于每对数,求出一组 xi,yi,使其满足 ai×xi+bi×yi=gcd(ai,bi)。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含两个整数 ai,bi。

输出格式
输出共 n 行,对于每组 ai,bi,求出一组满足条件的 xi,yi,每组结果占一行。

本题答案不唯一,输出任意满足条件的 xi,yi 均可。

数据范围
1≤n≤105,
1≤ai,bi≤2×109
输入样例:

2
4 6
8 18

输出样例:

-1 1
-2 1

代码

#include <bits/stdc++.h>
using namespace std;

void exgcd(int a,int b,int &x,int &y){
    
    if(!b){
        
        x=1,y=0;
        return ;
        
    }
    else{
        
        exgcd(b,a%b,x,y);
        
        int t=x;
        
        x=y;
        
        y=t-a/b*y;
        
    }
    
}

int main(){
    
    int n;
    
    cin>>n;
    
    while(n--){
        
        int a,b,x,y;
        
        cin>>a>>b;
        
        exgcd(a,b,x,y);
        
        cout<<x<<" "<<y<<endl;
        
    }
    
    return 0;
        
}

4.5.2 解一元线性同余方程


概念

  • a x ≡ b ( m o d   m ) ax\equiv b(mod~m) axb(mod m),即 a x m \frac{ax}{m} max b m \frac{b}{m} mb的余数相同,且 a , b , m a,b,m a,b,m为整数,求 x x x的值
  • 该方程即为一元线性同余方程

思想

  • a x ≡ b ( m o d   m ) ax\equiv b(mod~m) axb(mod m)做等价变形: a x + m y = b ax+my=b ax+my=b

  • ∵ a x ≡ b ( m o d   m ) ∴ a x % m = k ( b % m ) , ( k ∈ Z ) ∴ a x − ⌊ a x m ⌋ m = k ( b − ⌊ b m ⌋ m ) ∴ a x − k b = ( ⌊ a x m ⌋ − k ⌊ b m ⌋ ) m ∵ ⌊ a x m ⌋ , ⌊ b m ⌋ , k ∈ Z ∴ ( ⌊ a x m ⌋ − k ⌊ b m ⌋ ) ∈ Z 设 ( ⌊ a x m ⌋ − k ⌊ b m ⌋ ) = y , ( y ∈ Z ) ∴ a x − k b = m y ⇒ a x − m y = b 又 ∵ y 可以为负数 ∴ a x ≡ b ( m o d   m ) ↔ a x + m y = b \begin{aligned} &\because &ax&\equiv b(mod~m)\\ &\therefore &ax\%m&=k(b\%m),(k\in \Z)\\ &\therefore &ax-\lfloor\frac{ax}{m}\rfloor m&=k(b-\lfloor\frac{b}{m}\rfloor m)\\ &\therefore &ax-kb&=(\lfloor\frac{ax}{m}\rfloor-k\lfloor\frac{b}{m}\rfloor)m\\ &\because &\lfloor\frac{ax}{m}\rfloor,&\lfloor\frac{b}{m}\rfloor,k\in \Z\\ &\therefore &(\lfloor\frac{ax}{m}\rfloor&-k\lfloor\frac{b}{m}\rfloor)\in \Z\\ &&设(\lfloor\frac{ax}{m}\rfloor&-k\lfloor\frac{b}{m}\rfloor)=y,(y\in \Z)\\ &\therefore &ax-kb&=my\Rightarrow ax-my=b\\ 又&\because &y&可以为负数\\ &\therefore &ax\equiv b(mod~&m)\leftrightarrow ax+my=b \end{aligned} axax%maxmaxmaxkbmax,(⌊max(⌊maxaxkbyaxb(mod b(mod m)=k(b%m),(kZ)=k(bmbm)=(⌊maxkmb⌋)mmb,kZkmb⌋)Zkmb⌋)=y,(yZ)=myaxmy=b可以为负数m)ax+my=b

  • 由扩展欧几里得算法的推论可知:当且仅当 g c d ( a , m ) gcd(a,m) gcd(a,m)可以整除 b b b时, a x + m y = b ax+my=b ax+my=b存在整数解

  • 由扩展欧几里得算法可知: { 当 g c d ( a , m ) = b 时: { x = x 0 y = y 0 当 g c d ( a , m ) 为 b 的整数倍时: { x ′ = x 0 b g c d ( a , m ) y ′ = y 0 b g c d ( a , m ) 由扩展欧几里得算法可知: \begin{cases} 当gcd(a,m)=b时:\begin{cases}x=x_0\\y=y_0\end{cases}\\ 当gcd(a,m)为b的整数倍时:\begin{cases}{x}'=\frac{x_0b}{gcd(a,m)}\\{y}'=\frac{y_0b}{gcd(a,m)}\end{cases} \end{cases} 由扩展欧几里得算法可知: gcd(a,m)=b时:{x=x0y=y0gcd(a,m)b的整数倍时:{x=gcd(a,m)x0by=gcd(a,m)y0b


例题 878. 线性同余方程

原题链接

描述

给定 n 组数据 ai,bi,mi,对于每组数求出一个 xi,使其满足 ai×xi≡bi(modmi),如果无解则输出 impossible

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一组数据 ai,bi,mi。

输出格式
输出共 n 行,每组数据输出一个整数表示一个满足条件的 xi,如果无解则输出 impossible

每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。

输出答案必须在 int 范围之内。

数据范围
1≤n≤105,
1≤ai,bi,mi≤2×109

2
2 3 6
4 3 5

输出样例:

输出样例:

impossible
-3

代码

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;

void exgcd(LL a,LL b,LL &x,LL &y){
    
    if(!b){  //若b=0时
        x=1,y=0;
        return ;
    }
    else{
        exgcd(b,a%b,x,y);
        LL t=x;
        x=y;
        y=t-a/b*y;
    }
    
}

LL gcd(LL a,LL b){
    return b ? gcd(b,a%b) : a;
}

int main(){
    
    int n;
    
    cin>>n;
    
    while(n--){
        
        LL a,b,m,x,y;
        
        cin>>a>>b>>m;
        
        LL d=gcd(a,m);
        
        exgcd(a,m,x,y);
        
        if(b%d) cout<<"impossible"<<endl;
        else cout<<b/d*x%m<<endl;
        
    }
    
    return 0;
    
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪漫主义狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值