基于Faster-RCNN的人脸口罩检测系统,可进行图像目标检测,也可进行视屏检测(pytorch框架,python)

本文详细介绍了一个基于Faster-RCNN的口罩检测系统,使用PyTorch框架,涵盖了项目结构、步骤、数据集、PyQt5GUI界面以及模型训练和验证。源码有偿提供,包含代码、模型权重和UI界面。
摘要由CSDN通过智能技术生成

更多目标检测和图像分类识别项目可看我主页其他文章

功能演示:

基于Faster-RCNN的口罩检测系统,支持图像检测和视频检测(pytorch框架)_哔哩哔哩_bilibili

(一)简介

基于Faster-RCNN的人脸口罩检测系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型权重,模型训练记录,ui界面等。ui界面由pyqt5设计实现。

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:
超详细的pycharm+anaconda搭建python虚拟环境_pycharm配置anaconda虚拟环境-CSDN博客

pycharm+anaconda搭建python虚拟环境_哔哩哔哩_bilibili

(二)项目介绍

1. 项目结构

对应的目录结构如下:

​​​

该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单:

第一步:模型训练,即运行train_res50_fpn.py文件 

第二步:模型验证,当模型训练完后,运行validation.py文件

第三步:使用模型,即运行gui.py文件即可通过GUI界面来展示模型效果

2. 数据集 ​​​

部分数据展示: 

​​

3.GUI界面(技术栈:pyqt5+python) 
a.GUI初始界面

​​​

b.图像检测界面

​​​

c.视频检测界面

4.模型训练和验证的一些指标及效果

​​

​​

(三)总结

以上即为整个项目的介绍,完整的项目包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标等 。

若项目使用过程中出现问题,请及时交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值