人脸检测——Faster R-CNN

本文介绍了Faster R-CNN在人脸检测中的实现,通过Region Proposal Networks (RPN)找到候选目标窗口,再由Fast R-CNN进行判断。RPN采用3x3滑动窗口,生成分类和回归的输出。Faster R-CNN结构中,RPN与R-CNN共享层以提高效率,使用ROI-Pooling处理目标区域。训练策略采用交替方式进行,包括单独训练RPN、利用RPN候选窗口训练R-CNN等四个阶段。
摘要由CSDN通过智能技术生成

本次介绍人脸检测方法Faster R-CNN:

《2016 Arxiv: Face Detection with the Faster R-CNN》.

上面这篇文章,是对Faster R-CNN的人脸检测实现,原始的Faster R-CNN实现的是多目标检测,即下面这篇文章:

《2015 CVPR: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks》.

核心导读:

RPN(Region Proposal Networks) + Fast R-CNN

RPN负责找到可能的目标窗口,R-CNN负责进一步判断目标。

因为讲解Faster R-CNN的文章已经很多了,所以我这里就快速的切入几个要点。

—————————— RPN ——————————

RPN负责从一副输入图像中选出一些候选目标窗口,它的作用和古老的“Sliding Window”(滑动窗口)类似,但后者通常会在一幅图像上产生数以万计的窗口。

下面给出RPN的示意图:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值