就在今天,Meta 发布了 Llama 3.1
,这次带来的中杯、大杯和超大杯3个版本。
从纸面数据来看,Llama 3.1
超大杯已经能跟 GPT-4 Omni
、Claude 3.5 Sonnet
分庭抗礼了。
而中杯和大杯更是将同量级的对手摁在地上摩擦。
要知道,Llama
的对手可是闭源模型啊工友们!
小扎同志说,开源AI会成为行业的标准,就像Linux一样!
不管怎么说,既然你开源了,那我就在本地部署起来吧。
本文使用 Ollama
在本地运行大语言模型,它不止能运行 Llama 3.1
,还支持阿里的 qwen2
等开源模型。
同时借助 OpenWebUI
的帮助,让你可以在图形化界面里跟 Llama 3.1
聊天互动。
安装 Ollama
Ollama
是一个专门为在本地环境中运行和管理大型语言模型(LLM)而设计的开源工具。
打开 Ollama官网 下载 Ollama
。
根据你的系统去下载对应的安装包即可。下载完就运行它,傻瓜式安装,一直点“下一步”就行了。安装完你就能看到一个客户端的图标。
下载并运行 Llama 3.1
回到 Ollama官网,进入 Models
页面,这里会列出很多热门的模型。你也可以在搜索框里搜索自己想要的模型。
这里我们选择 llama3.1
。
蓝框可以选择不同量级的 Llama 3.1
模型,红框是选中的这个模型的下载和运行命令。
405b的模型231个G,我电脑实在玩不起,硬盘的剩余空间都没这么大😭
我就拿8b的模型演示一下吧~
在终端输入这条命令就会开始下载 Llama 3.1
8b的这个模型,如果已经下载过了它会直接运行,不需要重复下载。
arduino
代码解读
复制代码
ollama run llama3.1
下载并运行成功后,你就可以在终端跟 Llama 3.1
这个模型对话了。
当然啦,如果你觉得 Llama
的中文不太强,可以试试阿里的 qwen2
,在 Ollama官网 搜 qwen2
选择指定版本,复制下载命令到终端执行即可。
搭建 Web 界面
在终端和大语言模型聊天实在太原始了,有套好看的 Web 界面会更容易在老板面前装杯。
本文要介绍的是 OpenWebUI,使用 docker
运行它会比较方便。
看到 docker
不要慌,很简单的。
打开 docker官网 ,根据你的系统下载对应版本的 docker
客户端。
接着继续傻瓜式安装即可。
安装完 docker
后,需要打开 docker
客户端。
接着我们打开 OpenWebUI
的文档,文档列出几种运行方式,如果在本地运行,复制红框的命令在终端运行即可。如果你电脑有N卡,可以用绿框那条命令。
执行完上面的命令后,在浏览器访问 http://localhost:3000/
就能看到下面这个界面。
首次注册的用户是管理员账户,邮箱和密码都可以随便填,这些都是保存在你本地的数据。只要你记得自己注册的是什么邮箱和密码就行了。
登录后就能看到上面这个界面,在聊天窗上方选择 llama3.1
模型就可以开始愉快的聊天了。
以上就是本文的全部内容啦。下一篇打算介绍一下“如何在本地部署一个基于 Llama 3.1
的 Coze 平台” 😁
如何系统的去学习AI大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓