CNN,RNN
相同点
- 都是传统神经网络的拓展
- 前向计算产生结果,反向计算更新模型
- 每层神经网络横向可以多个神经元共存,纵向可以有多层神经网络连接
不同点 - CNN空间扩展,神经元与特征卷积;RNN时间扩展,神经元与多个时间输出计算
- RNN可以用于描述时间上连续状态的输出,有记忆功能,CNN用于静态输出
- CNN高级100+深度,RNN深度有限
组合后 - 大量信息同时具有时间空间特性:视频,图文结合,真实的场景对话
- 带有图像的对话,文本表达更具体
- 视频相对图片描述的内容更完整
图片标注
CNN特征提取,RNN语句生成
视频分类
RNN特征提取,CNN内容分类
图片问答
CNN特征提取用于对话问答
- 特征提取
LSTM输出,FC层输出 - 特征合并
Concatenate层,Attention相乘 - 结果输出
连续语句输出LSTM,组合分类回归DNN