深度学习——CNN+RNN

本文探讨了深度学习中CNN和RNN的相似点与不同点,以及它们在图片标注、视频行为识别和图片/视频问答中的联合应用。通过CNN进行特征提取,RNN用于语句生成和时间序列分析,实现模型的优化和性能提升。讨论了不同的模型组合策略,如LSTM用于CNN特征融合和目标检测,以解决视频行为识别中的挑战。
摘要由CSDN通过智能技术生成

CNN,RNN

在这里插入图片描述
相同点

  • 都是传统神经网络的拓展
  • 前向计算产生结果,反向计算更新模型
  • 每层神经网络横向可以多个神经元共存,纵向可以有多层神经网络连接
    不同点
  • CNN空间扩展,神经元与特征卷积;RNN时间扩展,神经元与多个时间输出计算
  • RNN可以用于描述时间上连续状态的输出,有记忆功能,CNN用于静态输出
  • CNN高级100+深度,RNN深度有限
    组合后
  • 大量信息同时具有时间空间特性:视频,图文结合,真实的场景对话
  • 带有图像的对话,文本表达更具体
  • 视频相对图片描述的内容更完整

图片标注
CNN特征提取,RNN语句生成

视频分类
RNN特征提取,CNN内容分类

图片问答
CNN特征提取用于对话问答

  1. 特征提取
    LSTM输出,FC层输出
  2. 特征合并
    Concatenate层,Attention相乘
  3. 结果输出
    连续语句输出LSTM,组合分类回归DNN

图片标注

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值