深度学习——卷积神经网络01

本文深入探讨了卷积神经网络的基础知识,包括链式反向梯度传导原理,卷积层、池化层、零填充的作用,以及全连接层。详细解释了卷积层的关键参数,如卷积核大小、步长和边界扩充,并通过实例展示了卷积运算过程。此外,还介绍了池化层的目的和Max Pooling的操作,以及Zero Padding在保持特征图尺寸不变中的应用。最后,讨论了卷积网络的结构和参数计算,强调了非线性激励层、归一化层和融合层在提升模型性能中的作用。
摘要由CSDN通过智能技术生成

链式反向梯度传导

链式法则
在这里插入图片描述
神经网络中的链式法则
从loss向输入传播
每层导数(Δy,Δx)结果存储用于下一层导数的计算。
在这里插入图片描述
例如:
f(x,y,z) = (z+y)*z
分别求f对 x, y, z的偏导:
设q = x + y , 则f = qz ,因为q对x,y分别求偏导均为1,f对z,q求偏导为q,z,则f对x,y求偏导为q,z。
在这里插入图片描述

示例

f(x,y,w) = 1 / (e^- [(x1+x2)w + max(y1,y2)]^
得到的输入数据和结构如图:
在这里插入图片描述
一步步向前计算可得:

  1. x1+x2 = 1.5
  2. (x1+x2)w = 3
  3. max(y1,y2) = -2
  4. (x1+x2)w + max(y1,y2) = 1
  5. -(x1+x2)w + max(y1,y2) = -1
  6. e^-(x1+x2)w + max(y1,y2)^ = 0.368
  7. 则f(x,y,w) = 1 / (e^- [(x1+x2)w + max(y1,y2)]^ = 2.718
    在这里插入图片描述
    反向
    7,df/df = 1
    6,f(x) = 1/x ; df/dx = -1/x2 ∴ 1 * (-1/0.3682) = - 7.39
    5,f(x) = ex; df/dx = ex ∴ -7.39 * e-1 = -2.72
    4,f(x) = -x; df/fx = -1 ∴ -2.72*(-1)= 2.72
    3,f(x,y) = x+y; df/fx = 1, df/dy = 1 ∴ x = y = 2.72
    2,f(x,y) = xy; df/dx = y,df/dy = x ∴ x = 2.722=5.44, y=w=2.721.5=4.08
    1&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值