百度声纹识别论文deep speaker介绍

这篇文章介绍一下百度的声纹识别论文:Deep speaker: an End-to-End Neural Speaker Embedding System其基本架构如图1所示                                                    图1  Deep s...

2018-05-03 20:13:51

阅读数 2253

评论数 5

【开发日记】Deep Speaker 开发日记之Triplet选择

在Deep Speaker中,Triplet三元组的选择是很重要的。如果随机选择,会使收敛速度变慢,如果使用“hard-negative”,会得到次优的结果,也就是说ap和an的相似度一直接近1,如图1所示。因此FaceNet论文中建议使用“semi-hard-negative”,根据我做的实验来...

2018-04-16 18:58:41

阅读数 1849

评论数 4

【开发日记】Deep speaker之ResCNN Input结构

Deep speaker这篇文章有很多细节没有描述,加上没有官方的源代码,导致要实现很难。这篇文章主要是写一下ResCNN Input的结构,这个应该是很多人迷惑的地方。由于一开始没有经验,因此代码是参考github上的开源代码:https://github.com/philipperemy/de...

2018-04-14 08:23:01

阅读数 1575

评论数 1

以手机为基础的移动互联网对我们生活的影响

手机已经严重影响了我们的生活,这个谁也不会有异议。因为我们,普通大众都感觉到了。这里,我想聊三个方面,一个是手机在哪些方面影响我们了,第二个是看似简单的技术怎么极大地影响我们,三是,看似这么小的东西,造就了什么?用什么方式来描绘手机对我们的影响呢?可以描绘现在的典型的一个人的一天生活。我一直觉得数...

2018-04-10 22:10:08

阅读数 713

评论数 0

人工智能对我们的影响(随便谈谈)

和朋友聊天,我总是很兴奋地跟他们说,人工智能将影响我们生活的方方面面。他们也都表示同意,因为现在的人工智能太火了。但是,但是一般他们都会说人工智能貌似没有影响到我们的生活。言外之意,人工智能离真正影响我们的生活还很远,现在的火热都是媒体炒出来的,我根本不信。我试着举例子跟他们解释,我说自动驾驶啊,...

2018-04-10 21:41:37

阅读数 1993

评论数 0

【学习日记】人脸识别FaceNet之深度卷积网络NN2解读

这篇日记解读FaceNet的深度卷积网络NN2,并使用Tensorflow实现。NN2网络的结构如下图所示:NN2网络几乎和Inception V1一样,所以如果没有Inception V1的基础,依靠上面这张表格使用Tensorflow实现代码还是有点困难的。这里先介绍inception模块。i...

2018-03-11 15:34:04

阅读数 1132

评论数 0

【学习日记】人脸识别之FaceNet

之前就对人脸识别技术很向往,觉得很神奇。入局深度学习到现在,人脸识别技术的原理也渐渐清晰起来。不经感慨,深度学习技术真的太强大,看似简单的结构却能解决这么复杂的问题。这篇文章主要介绍google那篇著名的人脸识别论文:FaceNet: A Unified Embedding for Face Re...

2018-03-11 11:36:17

阅读数 1147

评论数 0

【参赛日记】参加天池大数据竞赛

之前做的“猜拳神器”,还是以后要做的“挥手拍照”和“欢迎回家”。虽然很好玩,但毕竟是个人项目,感觉上不了台面,简历也不好写。刚好看到天池在举办ICPR MTWI 2018挑战赛,就鼓起勇气参加一下。这次的ICPR MTWI 2018,共有三个赛事,分别是网络图像的文本识别、网络图像的文本检测、网络...

2018-03-08 20:56:42

阅读数 2807

评论数 1

【开发日记】挥手拍照和回家欢迎

又想到两个非常有意思的项目,哈哈~。不仅可以将这段时间学习的知识用于实际项目,也可以锻炼自己的动手能力。一个叫“挥手拍照”,灵感来源于大疆无人机“御”。无人机感知到你的手势之后,自动调整摄像头位置使你位于画面的中心,然后闪灯3下,拍照。第一个项目就是实现“挥手拍照”的功能。这里不使用无人机,而是使...

2018-03-07 21:15:31

阅读数 145

评论数 0

我的职业兴趣

偶然了解到“职业兴趣”这个概念,搜索了以下,找到了以下网站霍兰德SDS职业兴趣测试。做60道题,就可以测试你的职业兴趣。出于好奇,想了解自己的职业兴趣,就做了一下。可恨的是,竟然要花9.9元买这个报告,想想也不多,看看自己的职业兴趣也无妨。以下是报告内容:目录A.你适合的现代职业1B.你适合的传统...

2018-03-02 22:54:41

阅读数 1946

评论数 0

Tensorflow+树莓派,自制“猜拳神器”

本教程的灵感来源于谷歌云负责维护开发者关系的Kaz Sato制作的一个“猜拳机器”教程[1],见下图。该教程使用弯曲传感器和Tensorflow来识别猜拳手势,然后选择相应的选项:石头、剪刀、布。该项目还上了大名鼎鼎的谷歌大脑负责人Jeff Dean关于谷歌大脑在2017年的进展回顾里[2]。  ...

2018-02-24 20:42:40

阅读数 3977

评论数 11

【学习日记】吴恩达深度学习工程师微专业第一课:神经网络和深度学习

以下内容是我听吴恩达深度学习微专业第一课做的学习笔记,主要是按自己的理解回答一些问题,并非全部出自课程内容。1. 什么是神经网络?神经网络是诸多机器学习方法中的一种,受人类大脑工作方式的启发而发明的。人类大脑的一个神经元通过多个树突来接收来自不同神经元的信号,接着细胞核处理信号,然后通过同一个轴突...

2018-02-23 17:32:06

阅读数 537

评论数 0

【开发日记】石头剪刀布之最终功能实现

在之前一篇文章——石头剪刀布之卷积神经网络,我已经定义了网络模型,当时在每类200张图片的情况下可以达到89%左右的精度。在本项目中,获取数据的成本并不是很高,利用摄像头就可以获得足够多的数据。因此,我又收集了一些数据,使得每类的图片大概是3000张左右。按照之前的训练方法,验证精度可以达到98....

2018-02-14 11:00:12

阅读数 336

评论数 1

【开发日记】石头剪刀布之树莓派控制舵机

在石头剪刀布这个游戏里面,树莓派需要通过控制舵机的转动来和我进行“猜拳”游戏。这篇文章介绍树莓派控制舵机的基础操作。本文主要参考文章树莓派使用python 控制G90舵机。我使用的舵机是辉盛的SG90。SG90共有三根线,红线接5V电源,棕线接GND,黄线为数据控制线,该线接到GPIO口上,这里使...

2018-02-09 16:43:00

阅读数 1050

评论数 0

【开发日记】石头剪刀布之卷积神经网络

在上一篇文章中——石头剪刀布之神经网络训练,利用预训练的MobileNet虽然可以得到很高的精度,而且模型占用的内存很小,只有5M左右。但是,在实际应用的时候,在我的笔记本上识别一张图片需要0.5s(使用如下代码),更不用说在树莓派上运行了。究其原因,是因为MobileNet最少需要128*128...

2018-02-09 13:09:00

阅读数 438

评论数 0

【开发日记】石头剪刀布之神经网络训练

收集好数据之后,就可以进行训练了。这里可以参考我之前写的一篇博客,利用预训练模型进行迁移训练,详见【开发日记】马桶识别之马桶分类,通过迁移学习进行马桶分类 通过上述博客组织好数据结构,然后调用以下代码即可: python E:\Python35\Lib\site-packages\tens...

2018-01-30 22:51:37

阅读数 352

评论数 0

【开发日记】石头剪刀布之数据获取

机器学习的第一步就是获取训练的数据。因为是和自己猜拳,所以这里可以通过树莓派的摄像头拍摄自己的手势图片作为训练数据。 通过opencv调用树莓派的摄像头需要做一些设置,在启动时启用摄像头,可以参考以下链接: 【树莓派】在OpenCV中调用CSI摄像头 安装以上教程做好之后,就可以用ope...

2018-01-30 22:37:53

阅读数 433

评论数 0

【开发日记】石头剪刀布之树莓派opencv和tensorflow安装

利用树莓派进行“石头剪刀布”游戏,需要安装opencv和tensorflow。关于opencv和tensorflow的安装,网上有很多的教程,本篇也是参考一些人的教程写成的。但是因为在安装的过程中碰到一些问题,所以不厌其烦再写一遍,万一下次自己还要再安装一遍呢。 树莓派opencv安装 ope...

2018-01-30 22:19:48

阅读数 708

评论数 0

【开发日记】“石头剪刀布”,通过树莓派+机器学习让机器和自己猜拳

看谷歌大脑负责人Jeff Dean关于谷歌大脑在2017年的进展回顾,里面有一段视频立马吸引了我。大概是一个人和机器进行“石头剪刀布”。在视频中,机器每次都可以识别出人出的是“石头”还是其他的,然后几乎同时做出反应。看视频根本区分不出机器“慢”出手。 以下为新智元关于Jeff Dean博客的报道...

2018-01-30 21:55:54

阅读数 1037

评论数 0

【开发日记】马桶识别之马桶分类,增加图片数量再进行分类

从京东评论晒图中,对每一个型号又抓取了300张左右的图片,这样每一个型号大概有600张图片,按照之前的方案: 1. 通过Tensorflw迁移学习进行马桶分类; 2. 通过百度人工智能“”定制化图片识别”进行训练。 训练的结果如下: 1. Tensorflow迁移学习:     4000...

2018-01-21 20:23:33

阅读数 169

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭