【开发日记】马桶识别之马桶分类,增加图片数量再进行分类

从京东评论晒图中,对每一个型号又抓取了300张左右的图片,这样每一个型号大概有600张图片,按照之前的方案:

1. 通过Tensorflw迁移学习进行马桶分类;

2. 通过百度人工智能“”定制化图片识别”进行训练。

训练的结果如下:

1. Tensorflow迁移学习:

    4000迭代步: 测试精度 69%

    20000迭代步: 测试精度 70%

2. “定制化图片识别”

测试精度:79.22%

从上可以看出,tensorflow的预训练模型在图片增加后精度并没有得到明显提高,具体原因不详,接下来需要进一步研究。而“定制化图片识别”精度提高到了79.22%, 有差不多10个点的提升。这个也是比较符合定期的。但是离目标中的精度还是有一些差距。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值