基于lstm的风力发电机健康监测

Predicting Remaining Useful Life of Wind Turbines Using LSTM

Abstract: Wind power has become one of the most promising and rapidly developing renewable energy sources. However, the reliability and stability of wind turbines are critical factors for ensuring the stable operation of wind power systems. Accurately predicting the remaining useful life (RUL) of wind turbines is of great significance for reducing maintenance costs and ensuring safe and efficient operation. In this study, we propose an LSTM-based RUL prediction method for wind turbines. The proposed method is trained on historical sensor data collected from wind turbines and is capable of accurately predicting the RUL of wind turbines. Experimental results on a real-world wind turbine dataset demonstrate the effectiveness and superiority of the proposed LSTM-based RUL prediction method compared to other state-of-the-art RUL prediction methods. The proposed method has great potential for practical applications in wind power systems, and can significantly improve the reliability and stability of wind power systems.

Keywords: LSTM, wind turbine, remaining useful life prediction.

0    Introduction

Renewable energy has become an important part of the global energy mix due to its low carbon emissions and abundant availability. Wind energy, in particular, has experienced rapid growth in recent years. However, the reliability and maintenance of wind turbines remain major challenges in the wind energy industry. Accurate prediction of the remaining useful life (RUL) of wind turbines is essential to optimize maintenance schedules and minimize downtime. In this paper, we propose an LSTM-based approach for RUL prediction of wind turbines. The proposed method can effectively capture the complex temporal dependencies in sensor data and provide accurate RUL estimates. The experimental results demonstrate the effectiveness and superiority of the proposed method compared to existing approaches.

1    Description of the Dataset

For most complex systems like wind turbines , finding a suitable model that allows the injection of health related changes certainly is a challen

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值