一、选题的类别 ( )基础研究 (√ )应用研究 ( )应用理论研究 |
二、选题依据及研究意义 2.1研究背景 伴随着人类社会快速发展的同时,人类赖以生存的自然环境也在逐步恶化,究其原因在于矿物类能源的大量消耗[1],因此,清洁能源的开发就显得十分重要。近代以来,人们的共识之一就是工业革命的核心是动力,人类社会发展的各个时期各个阶段,不断有对应的矛盾出现,矛盾的解决是各个时期进步与发展的关键。现阶段的矛盾是一多一少,即温室气体的增多和石油等化石能源的减少,这个矛盾制约了整个世界的发展。由温室气体的增多而产生的温室效应改变了地球之前众多状态的平衡,从而引起各种自然灾害,因此温室效应威胁了人类的生存;而与此同时石油等化石能源的储存量在逐渐减少,也许在可预期的将来不能满足人类的持续使用。这一多一少已经成为许多矛盾冲突的根源,是进一步持续发展的瓶颈,因此目前阶段有一个巨大的需求,就是寻求新的能源,只有人们解决这个问题,人类的发展才会进入一个新的境地,不解决这个问题,就无法继续前进,解决这个问题的的钥匙就是要有新能源[2-3]和相应的新能源装备,来代替和补充我们传统的化石燃料。节能减排是拖延整个进程的补充方法,不是一个解决根本问题的方法。根本的办法是人们要更充分,更成熟的利用和发展新能源及相应的新能源设备,大力革新主导社会生产力发展的技术 2.2研究意义 风电能源逐渐成为电力能源生产的主力军。因为风电系统使用过程能受到风力资源方面的影响,导致风电系统功率具有不确定性特点,增加了电网运行安全风险,也产生了消纳矛盾。为了解决这一问题,需要对风电功率的预测法深度思考 根据主导社会发展的领头羊产业三要素可知,新能源领域已经成为当前发展的关键,是主线,不可取代,整个社会会随着新能源领域的发展经历新一轮的技术革命,可以继续快速的、持续的发展,新能源领域的革命性发展对未来能源电气领域发展的推力是巨大的。由于风电等新能源行业的日益迅猛发展,同时又因为风能,太阳能等清洁型能源的不可控性,风电,光伏等新能源的出力是很难以精准预测的,这给风电,光伏等新能源机组并网带来了很大的困难。 |
三、选题的研究现状及主要参考文献 3.1国外研究现状 国外对风电功率预测的相关研究起步早于国内,现已基本形成了一套完整的风电功率预测体系,开发出了多套已应用于商业的风电功率预测软件。在现阶段,国外对风电出力预测的研究主要集中于对气象信息的研究将预测精度进一步提高,并同时研究基于深度学习等多方法的融合来提高对风电功率预测的效果。文献[4]提出了一种基于辅助预报器(AxP)的遗传规划的神经网络集成的风电功率预测方法,用径向基函数和相关向量机构造辅助预报器,再用多种神经网络作为基回归器以解决训练阶段的过拟合状态。验证了辅助预测器在神经网络和ANN集成模型中的重要性,减小了风力发电功率的预测误差。文献[5]提出了一种基于Schaake-Shuffle(SS)技术对独立风机进行配对的方式,以获得对聚集的风能的独特集合预测,根据该国家大气研究中心(NCAR)开发的系统,在通过SS技术对风机重新排列之后,建立一个独立的发电集合,对风电机组进行功率预测时,较之前的预测提高了一定精度。 国外预测技术也已经成熟。其中,以欧美国家为首的技术最为先进,如丹麦的Prediktor预测系统、德国的Previento预测系统和西班牙的Local Pred预测系统等。 全球第一个风电功率预测软件是由丹麦Risø国家实验室开发的Prediktor预测系统[5],该系统的预测模型是物理模型,首先得到某一地点的地面风速,采用的方法是地心自转定律和风速的对数分布图,然后考虑风电场附近的地理环境因素,从而得到更高分辨率的风速预测,最后对风电场风电功率进行预测。通过在线实测数据、先进统计方法和HIRLAM的气象模型,有效提高了短期预测精度[23] Previento预测系统[1]是由德国与丹麦共同开发完成。该系统将德国6个地点的数值预报结果进行空间细化,将当地的地理环境因素结合制造商提供的风机发电功率曲线将预测的风速映射为输出功率。 Local Pred预测系统[7]是由西班牙开发完成,通过流体力学软件和高分辨率的中尺度模式计算风速等气象数据,后对预测的风速进行修正,最终对历史数据,同期风速等气象数据进行处理,建立风电场风电功率预测模型。 国外风电功率预测主要有3种应用方式:一是电网调度部门和风电企业从风电功率预测的企业提取预测结果来安排调度生产计划,如加拿大的Alberta;二是由发电企业上报风电功率预测结果。如在西班牙,发电企业必须上报风电功率预测结果来得到更高的上网电价,另外预测结果的偏差要受相应的经济惩罚,我国目前采用的也是这种模式;三是由电网调度部门参与建设。虽然国外的风电功率预测的应用模式各有不同,但是共同追求的目标是高准确度的风电功率预测结果 [30-31] 。 3.2国内研究现状 国内风电场风电功率预测系统的研究起步较晚,但有不少系统投入国内各风电场中运行。 WPFS预测系统[6]是由中国电力科学研究院研发,该系统可以对单独风电场或特定区域的集群进行预测,能够对风电场次日24小时内的96个点的风力曲线进行预测。同时WPFS预测系统提供设置每日预测的时间及次数的功能。目前,该系统已经在吉林电网及江苏的各个风电场投入使用。国内对风电功率预测的研究虽然起步相对较晚,但是发展速度很快,在如今国家对新能源领域的大力投入之下,加之我国的风能资源极为优越,尤其以我国的“三北”地区(东北、西北及华北)和沿海区域的海上风电为代表,我国对风电出力预测的研究也取得了很多成果。 文献[8]在风电组合预测模型的基础上加入了考虑天气信息和频率特性,考虑到多种气象特征中的耦合关系,为了降低天气信息的复杂程度,提出基于长短期记忆网络实现风电低频功率分量预测。文献[9]将局部特性分解、样本熵和人工改进鲸鱼算法核极限学习机融合在一个模型中以实现短期风电出力的区间预测,通过各种模型的自有优势去优化其他模型,取长补短,实验仿真表明,该文所提模型能实现较好的风电区间预测。文献[10]主要在数据驱动方面寻求突破口,来更好的预测风电功率。该文通过总结现有的数据驱动方法的流程和思想,总结出离线数据驱动和人工深度学习算法的在线预测新思路。 基于ANN的风电功率预测模型为目前最常见的预测方法。这类方法的核心思想是利用各类ANN对模型输入变量和风电功率进行拟合,其研究重点多集中于输入变量的筛选以及ANN的选择上,并且其研究发展方向呈现出与ANN发展方向相同的趋势。Kariniotakis等人[11-12]尝试利用多层感知机构建面向风电功率的预测模型,并与基于传统时间序列方法得到的预测结果进行比较,验证了所提方法的优越性。文献[13]构建了基于双向极限学习机的风电功率预测模型,利用正向及后向得到的预测结果对最终模型输出进行修正。此外,相关学者也尝试将径向基函数神经网络[14]、小波神经网络[15-16]等应用于风电功率预测。 上述基于ANN的风电功率预测方法虽然在预测精度方面取得了一定的突破,但由于这些神经网络其自身结构的限制,即只能反映同一时刻输入与输出之间的关系,因此预测精度已达到了一定瓶颈,难以进一步提升。对此,相关学者在充分研究风电功率序列基本特性的基础上,利用循环神经网络(Recurrent Neural Network, RNN)构建预测模型,以反映数据在时序上的传递关系。文献[17]首先利用谱聚类对历史风电功率曲线进行聚类,然后将NWP数据作为模型输入并利用RNN构建风电功率预测模型。由于RNN自身结构缺陷会导致梯度消失问题,因此相关学者在RNN的基础上提出了LSTM神经网络[18]。该网络通过门结构设计代替了RNN隐藏层中单一的神经元结构,赋予了网络记忆长期历史信息的能力,为风电功率预测问题的解决带了新的技术手段。文献[19]利用归一化等数据预处理技术对历史风电功率数据进行清洗,并利用LSTM神经网络构建了面向风电功率的超短期预测模型。文献[20]提出了一种基于双向LSTM神经网络的风电功率预测模型,该模型通过添加反向隐藏层对正向结果进行修正,以提高模型预测精度。文献[21]利用小波分解法将风电功率序列进行拆解,然后利用双向LSTM神经网络分别对子序列进行预测,最终将子序列预测结果进行整合以获得最终的预测结果。文献[22]首先利用自助法对训练样本集进行多样化扩充,然后利用双向LSTM神经网络构建风电功率预测模型,并利用蜂群算法对模型参数进行寻优。文献[23]提出了一种基于长短期记忆网络分位数回归的短期风电功率概率密度预测模型,首先利用所提模型得到不同分位点下的风电功率,再采用高斯核函数对短期风电功率进行概率预测。 [1] 丁乃千, 陈正洪, 杨宏青, 许杨. 风电功率预报技术研究综述[J]. 气象科技进展, 2016, 6(01):42-45. [2]Tushar S,Vedanshu,M.M.Tripathi.Predictive analysis of RNN,GBM and LSTM network for short-term wind power forecasting[J].Journal of Statistics and Management Systems,2020,23(1). [3]夏露.基于深度学习的短期风电功率预测研究[D].华北电力大学(北京),2019. [4]Farah S,Asifullah K,Aneela Z,et al.Wind power prediction using a three stage genetic ensemble and auxiliary predictor[J].Applied Soft Computing Journal,2020,90. [5]Stefano A,Tyler M.The schaake shuffle technique to combine solar and wind power probabilistic forecasting[J].Energies,2020,13(10). [6] 邵海见. 基于数据的风电场短期风速预测[D]. 东南大学, 2016. [7] 黎静华, 桑川川, 甘一夫, 潘毅. 风电功率预测技术研究综述[J]. 现代电力, 2017, 34(03):1-11. [8]周宝斌.考虑气象信息和频率特性的超短期风电功率组合预测研究[D].山东大学,2020. [9]赵辉,华海增,王红君等.基于LCD-SE-IWOA-KELM的短期风电功率区间预测[J]. 电测与仪表,2020,57(21):77-83. [10]杨茂,张罗宾.基于数据驱动的超短期风电功率预测综述[J].电力系统保护与控制,2019,47(13):171-186. [11] Kariniotakis G. N., Stavrakakis G. S., Nogaret E. F..Wind power forecasting using advanced neural networks models[J].IEEE Transactions on Energy Conversion,1996,11(4):762-767 [12] Li S., Wunsch D. C., O Hair E., et al.Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation[J].Journal of Solar Energy Engineering,2001,123(4):327-332. [13] Zhao Y., Ye L., Li Z., et al.A novel bidirectional mechanism based on time series model for wind power forecasting[J].Applied Energy,2016,177:793-803 [14] Sideratos G., Hatziargyriou N. D..Probabilistic wind power forecasting using radial basis function neural networks[J].IEEE Transactions on Power Systems,2012,27(4):1788-1796. [15] Chitsaz H., Amjady N., Zareipour H..Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm[J].Energy Conversion and Management,2015,89:588-598. [16] Barbounis T. G., Theocharis J. B., Alexiadis M. C., et al.Long-term wind speed and power forecasting using local recurrent neural network models[J] . IEEE Transactions onEnergy Conversion,2006,21(1):273-284. [17] 李昌林. 基于循环神经网络的风电场功率超短期和短期预测[D].重庆大学,2017. [18] Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation. 1997, 9(8): 1735-1780. [19] 朱乔木,李弘毅,王子琪,陈金富,王博.基于长短期记忆网络的风电场发电功率超短期预测[J].电网技术,2017,41(12):3797-3802. [20] 王炜,刘宏伟,陈永杰,郑楠,李政,纪项钟,于广亮,康健.基于LSTM循环神经网络的风力发电预测[J].可再生能源,2020,38(09):1187-1191. [21] 谢小瑜,周俊煌,张勇军,王奖,苏洁莹.基于W-BiLSTM的可再生能源超短期发电功率预测方法[J].电力系统自动化,2021,45(08):175-184. [22] 薛阳,张宁,俞志程,吴海东,李蕊.基于BiLSTM和Bootstrap方法的风电功率区间预测[J].可再生能源,2020,38(08):1059-1064. [23] 殷豪,黄圣权,孟安波,刘哲.基于长短期记忆网络分位数回归的短期风电功率概率密度预测[J].太阳能学报,2021,42(02):150-156. |
四、拟研究的主要内容、创新点、重难点及研究思路 主要内容:
(2)对风电功率的预测方式和其中可能涉及的主要技术类型进行深度思考,深入分析风电功率预测数据背后的影响因素,并明确风电功率预测过程中主要的参考数据。 (3)利用Pytorch框架实现的LSTM (4)结合环境温度、有功功率、风速等参数进行风电功率的预测 (5)开发基于LSTM网络的预测系统的界面 (6)对风电功率预测系统的数据接口和通信方式进行设计,并将该预测系统应用于可视化的平台中 创新点: (1)设计了一套可视化的风电功率预测系统,为调度端和电力商家提供参考 (2)基于RNN网络的一种特殊的循环神经网络 重难点: (1)预测风电功率的各种参数的汇总与处理 (2)让用户能够更加清晰了解的可视化界面 (3)梯度下降法中的时序性倒传递算法,提高预测的准确性 研究思路:
(5)开发基于LSTM神经网络系统预测系统的界面,并进行相关测试,验证是否达到预期目标 |
五、研究进程安排 2022年10月-2022年11月: 根据任务书,查找相关的文献资料,并完成开题报告。 2022年11月-2023年3月: 完成开发设计,毕业论文初稿。 2023年3月-2023年4月: 填写论文中期检查表提交毕业论文中期检查表。 2023年04月-06月: 论文的答辩准备与答辩 |
六、其他说明 |
七、指导教师意见 指导教师签字: 年 月 日 |
八、专业毕业论文指导小组意见 指导小组组长签字: 年 月 日 |
基于LSTM网络的风电功率预测系统设计与开发开题报告
最新推荐文章于 2025-03-12 23:31:57 发布