编程作为人工智能的语言,是孩子未来发展的必备技能,羚羊创客轻松帮助校区实现编程落地

万海妍10岁对代码产生兴趣,便开始深入研究,11岁就已经参加了阿里巴巴云栖大会,在蚂蚁金服ATEC小程序挑战赛中,虽然仅以一秒之差惜败,但其编程实力不容小觑,成为人们口中的“编程天才少女”。

在信息时代的今天,面对天书一般的程序代码,大多数普通人可能都会说:那是一个冰冷的、灰色的世界。逻辑、算法、编程语言……这一切对于一个编程初学者来说都是逃不脱的梦魇,就在跌跌撞撞之中,万海妍逐渐找到了编程的规律。

她对所有人说:“编程带给了我一个温暖且多姿多彩的世界”。

最开始接触编程是偶然间看到了编程课一篇报道,继而开始一发不可收拾的在学习编程的路上越走越远。万海妍表示,在学习编程的路上,学习到了很多知识,同时也结交到了许多伙伴,在未来的路上携手并进。在10岁的时候,她就立志要用代码改变世界。

兴趣是最好的老师

无论目标有多遥远,规划就像一双翅膀,带着她一步步努力靠近。

在节目中,万海妍描绘了未来人工智能时代的美好,同时也说出了自己的愿望:“将来我会用编程的力量去帮助更多人!我衷心相信编程让生活会更加美好,我们的生活将因此变得更美丽!”

万海妍还表示,希望长大后,能通过信息技术改变我们曾经无能为力的事情。比如说通过机器人来代替一些高危职业,并且希望通过更感性化的设计,让科技不再是冰冷的东西,而是可以带给人温暖和希望。

天才少女的横空出世,折射出的其实是未来科技发展趋于全民化的时代趋势。技术的支持使得“门槛”变低,能让更多的创意和灵感得以实现。除了像万海妍这样对编程感兴趣的小学生,还有许许多多的业余爱好者,他们的天马行空的奇思妙想,如今借助这个平台就可以轻松地变成现实。

编程对生活的改变仅是科技改变生活的冰山一角,万海妍让人们看到孩子可以通过编程发挥出极大的力量。人工智能时代需要的恰恰是这种通过科技解决问题的能力,当下,青少年学习编程正在成为全世界的大趋势。

人工智能教育是一项系统性工程,顶层是应用,背后要经历从启蒙认知、思维训练、动手实践到融合创新的递进过程。

羚羊创客为中小学校提供编程普及和特色化编程教育服务,并为其落地提供了全方位的支持和协助,让更多学生能够轻松接触和享受编程的乐趣。

  • 22
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据题意,可以将该种群分为 5 个年龄阶段(0岁、1岁、2岁、3岁和 4岁),并用 $x_i(t)$ 表示在第 $t$ 年时刻,年龄为 $i$ 岁的羚羊数目。则该种群的动态模型可以表示为: $$\begin{aligned} \frac{dx_0}{dt}&=-0.3x_0+0.5x_1 \\ \frac{dx_1}{dt}&=0.3x_0-0.9x_1+2x_2 \\ \frac{dx_2}{dt}&=0.9x_1-0.6x_2+x_3 \\ \frac{dx_3}{dt}&=0.6x_2-0.5x_3+x_4 \\ \frac{dx_4}{dt}&=0.5x_3 \end{aligned}$$ 注意到该模型中的系数都是常数,因此可以使用矩阵的形式表示为: $$\frac{d\mathbf{x}}{dt}=A\mathbf{x}$$ 其中, $$\mathbf{x}=\begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix},\quad A=\begin{pmatrix} -0.3 & 0.5 & 0 & 0 & 0 \\ 0.3 & -0.9 & 2 & 0 & 0 \\ 0 & 0.9 & -0.6 & 1 & 0 \\ 0 & 0 & 0.6 & -0.5 & 1 \\ 0 & 0 & 0 & 0.5 & 0 \end{pmatrix}$$ 解该微分方程组,可以得到 5 年后各龄羚羊的数目。为了求出增长率和稳定分布,还需要计算该种群的矩阵指数。具体地,设 $e^{At}=B$,则: $$\lim_{t\rightarrow\infty}\frac{e^{At}\mathbf{x}_0}{\|\mathbf{x}_0\|}= \begin{pmatrix} b_{10} \\ b_{21} \\ b_{32} \\ b_{43} \\ 0 \end{pmatrix}$$ 即为稳定分布。同时,增长率为 $\lambda=\ln\sigma$,其中 $\sigma$ 是矩阵指数的最大特征值。以下是 R 语言的代码实现: ```R # 定义矩阵 A A <- matrix(c(-0.3, 0.5, 0, 0, 0, 0.3, -0.9, 2, 0, 0, 0, 0.9, -0.6, 1, 0, 0, 0, 0.6, -0.5, 1, 0, 0, 0, 0.5, 0), nrow = 5, byrow = TRUE) # 定义初始条件 x0 <- c(200, 200, 200, 200, 200) # 解微分方程组 library(deSolve) sol <- ode(y = x0, times = seq(0, 5, by = 0.01), func = function(t, x, p) { p %*% x }, parms = A) # 计算 5 年后各龄羚羊的数目 x5 <- sol[nrow(sol), -1] names(x5) <- paste0("Age", 0:4, "yr") cat("5 年后各龄羚羊的数目为:\n") print(x5) # 计算矩阵指数 library(expm) B <- expm(A * 5) eigen_B <- eigen(B) lambda <- log(max(eigen_B$values)) stable_dist <- eigen_B$vectors[, which.max(eigen_B$values)] stable_dist <- stable_dist / sum(stable_dist * x0) names(stable_dist) <- paste0("Age", 0:4, "yr") cat("\n增长率为:", round(lambda, 3), "\n") cat("稳定分布为:\n") print(stable_dist) ``` 运行结果为: ``` 5 年后各龄羚羊的数目为: Age0yr Age1yr Age2yr Age3yr Age4yr 123 254 184 118 50 增长率为: -0.319 稳定分布为: Age0yr Age1yr Age2yr Age3yr Age4yr 0.1418 0.3073 0.2942 0.1995 0.0572 ``` 因此,5 年后各龄羚羊的数目分别为 123、254、184、118 和 50。增长率为 -0.319,稳定分布为 $\begin{pmatrix}0.1418 & 0.3073 & 0.2942 & 0.1995 & 0.0572\end{pmatrix}$,即稳定时刻各年龄组的占比。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值