R语言科研绘图系列1——数据整理篇2

1 ggplot图片合并及对齐

ggplot2绘图后多个图片合并,及横纵对齐问题?

require(cowplot)
p <- plot_grid(SOD_l,POD_l,CAT_l,MDA_l,H2O2_l,阴离子_l,ncol=2,align="vh")##垂直/水平对齐坐标轴
p

2 数据框内变量重复数统计

方法1:unique主要是返回一个把重复元素或行给删除的向量、数据框或数组;
R中unique的用法
关于R语言中的几个清洗函数的用法

方法2:dplyr包count(数据,变量1,变量2)

方法3:利用SQL语句统计,这个不是很懂,能解决当前问题,以后补充
R语言筛选两列中元素相同的重复数据

##方法1
> unique(hh_2$分组)
[1] "A" "B"
> unique(hh_2$起始时间)
[1] 2010 2011 2012 2013 2014 2015 2016 2017 2018
##方法2
> count(hh_2,分组,起始时间)
   分组 起始时间  n
1     A     2010 13
2     A     2011 13
3     A     2012 12
4     A     2013 12
##方法3
library(sqldf)
n <- sqldf("select 分组,起始时间,count(1) from hh_2 group by 分组,起始时间")##hh_2为数据列,分组、起始时间为分组变量名

> head(hh_2)#数据列
  序号 分组 起始时间 终止时间    
1    1    A     2010     2011  
2    2    A     2010     2011  
3    3    A     2010     2011 

> n #统计结果
   分组 起始时间 count(1)
1     A     2010       13
2     A     2011       13
3     A     2012       12
4     A     2013       12

3 数据框条件合并

1.data.frame()或cbind,横向,同列名
2.rbind(),竖向,同变量名
3.dplyr包中的(inner、left、full)_join,依条件合并
R语言第四课:神奇R包dplyr
实用函数:筛选数据列(filter)、数据列排序(arrange)、重复统计(count)、管道符(%>% )、合并join

left_join(hh_12,hh_2[-4],by=c("序号","分组","起始时间"))

4 数据框列名重命名

> colnames(hh_2)
[1] "序号"     "分组"     "起始时间" "终止时间" 
> colnames(hh_2)[1] <- "xuhao"
> colnames(hh_2)
[1] "xuhao"    "分组"     "起始时间" "终止时间" 
> names(hh_2)[1] <- "序号"
> names(hh_2)
[1] "序号"     "分组"     "起始时间" "终止时间"

5 数据框列的分解和合并

用到tidyr包
实用函数:分列合并(separate/unite)、长转宽转长(spread/gather)

> separate(hh_2,起始时间,into=c("cen","ye"),remove=F,sep=2)
    序号 分组 起始时间 cen ye 终止时间      
1      1    A     2010  20 10     2011     
2      2    A     2010  20 10     2011     
3      3    A     2010  20 10     2011   

> unite(hh_2,"时期",起始时间:终止时间,sep = "-")##合并变量(:,“”)皆可
    序号 分组      时期       
1      1    A 2010-2011     
2      2    A 2010-2011     
3      3    A 2010-2011    
4      4    A 2010-2011    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值