pytorch中eval作用

bn和dropout层在train和test时参数是不一样的,为了方便编程,pytorch提出eval函数解决这个问题
1.dropout在train时采用部分神经员参与,但在test时是全部神经元,这就导致dropou层的输出变大,需要添加系数对其修正
2.bn在train时对每一个batch做归一化产生不同的参数,在test时predict实际是train时参数的平均移动

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值