Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

基本问题和动机:

已经有很多工作将对抗学习方法应用到领域自适应当中,这种方法通过训练域分类器网络(即判别器)来区分特征为源域或者目标域,以及训练一个特征生成网络来模拟判别器。然而,这种域分类器仅仅尝试去区分特征为一个源域还是一个目标域,因此并没有考虑类别之间的task-specific决策边界。因而,一个训练好的生成器会产生靠近类别边界的模糊特征。

围绕上面的问题,作者尝试使用task-specific决策边界的方法来使得网络输出源域特征和目标域特征的分布尽量相同,通过使用task-specific分类器作为判别器来检测那些远离源域支集(support)的目标域样本,特征生成器的作用是学习生成支集(support)中的目标域特征以用来“欺骗”分类器。因为生成器使用来自task-specific分类器的反馈进行训练,因此他能够避免生成类别边界附近的目标域特征。

Figure 1可以很清晰地看到, 在以前方法中,经过Domain Adaptation之后,目标域样本都映射到源域空间,但是分类决策边界依然是源域的,没能很好地分类,而本文所推荐的方法,不但能够将目标域样本空间映射到源域支集中,还能够通过训练对抗的方法进一步优化分类器,使得分类边界更加明显,更有助于目标域样本的分类。

 

 

模型及理论:

本文的对抗学习方法包括两种类型的“players”,一种是特定任务分类器task-specific classifiers,一种是特征生成器feature generator。特定任务分类器是按特定的任务进行训练的分类器, 可以用于物体分类或者语义分割。这篇文章的特定任务分类器的数量为2,他们分别对来自同一个生成器的输出特征进行分类。

 

作者的想法如图2所示

误差损失Dircrepancy Loss

 如公式(1),本文运用利用两个分类器的最大输出差的绝对值作为误差损失分别表示分类器F1,F2的输出。

Training Steps

 

Step A:

首先训练分类器和生成器使其能够很好地对源域样本进行分类。为了使得分类器和生成器达到特定任务分类器的效果,这一步是必须的。

目标函数如公式(2)和公式(3)所示

 

 

Step B:

 

在这一步中,固定生成器网络G的参数不更新, 把分类器<F1, F2>训练成为一个判别器。通过训练分类器来增加Disorepancy Loss,使他们能够检测那些没有包含在源域支集(support)中的那些目标域样本。从上图中可以看出, 这一步能够更好地调整分类器,使其更好地对目标域样本进行分类。如果没有这一步,那么两个分类器的输出可能是非常相似的,无法很好的检测那些在源域支集之外的目标域样本。

目标函数如下,作者增加了一个对源域进行分类的loss, 实验验证表明如果不加这一项的话,实验效果明显下降


Step C

在这一步,固定分类器的参数不跟新,通过训练生成器网络G来减小Discrepancy Loss。

Figure 2.中可以很清楚地看到,经过这个step,生成器G输出的目标域特征分布慢慢地往源域同类别的支集(support)靠近(G生成的源域特征的类别分布已经在Step A中训练分类器的时候已经固定),直到分类器输出的目标域的类别分布包含在源域对应类别的支集(support)中。

这一步有一个超参数,表示在一个mini-batch中G更新的次数。也就是说,在一个网站的mini-batch中Step A和Step B只执行一次,Step执行次数却是需要实验验证。

目标函数如图所示

 

 

在作者看来,这三个steps 的执行顺序并不是太重要, 关键还是 能够确保以对抗方式训练分类器和生成器的时候能够让他们对源域样本进行正确分类。作者希望理想状态下能够得到如Figure 2. Obtained Distributions所示的那样, 目标域特征的类别分类能够包含于对应于源域特征分布中并且分类器能够很好对其进行分类。

实验:

主要做了两种实验, 一种是物体分类实验,一种是语义分割。

(一)分类实验

 

第一种是分类实验,

首先是在Toy Datasets验证每个步骤对决策边界的影响

 

从上图中可以看到,本文所提出的方法训练所得到的决策决策边界效果比仅仅使用源域数据集对网络进行训练和没有step C步骤训练出来的效果要好。

再者, 作者在image datasets上做了实验,所显示的结果也是要好于其他方法。

 

最后, VisDA Classification Dataset是目前最大的跨领域物体分类数据集,作者用其跟MMDDANN作比较,大部分物体的分类结果好于其他方法,mean accuracy甚至达到state-out-of

 

第二种是语义分割,

 

同样,在语义分割的应用中使用DRN-105网络的效果大分部都能取得较好结果。

总结:

本文的亮点是作者很巧妙地使用对抗训练的思想应用到领域自适应当中,通过对抗训练使得生成器生成的目标域特征分布尽量靠近源域的特征分布,同时训练特定任务判别器来优化分类决策边界。另外,文章中的网络不使用区分特征为源域或者目标域的领域判别器。除了使用toy problem之外,还是用了数字分类、物体分类和语义分割来验证该方法的有效性。

现在还没搞清楚的是目标域最终是如何进行分类的?毕竟他是有两个分类器的。

 

  • 4
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 15
    评论
### 回答1: 最大分类器差异是一种用于无监督域自适应的方法,它通过最大化源域和目标域之间的分类器差异来提高模型的泛化能力。该方法通过在源域和目标域之间构建一个共享的特征空间,并使用最大均值差异来对齐两个域之间的特征分布。最大分类器差异方法已经在图像分类、目标检测和语音识别等领域得到了广泛的应用。 ### 回答2: 最大分类器差异(maximum classifier discrepancy)是一种用于无监督领域适应的分类器度量方法。在无监督领域适应中,在源域和目标域之间存在着分布差异,因此我们无法直接利用源域的标记样本进行训练。而最大分类器差异方法尝试通过最小化源域和目标域之间的分类性能差异来进行域适应,从而提高在目标域上的分类性能。 在最大分类器差异方法中,我们使用分别使用源域和目标域的数据来训练两个分类器。然后,我们用两个分类器来分别对源域和目标域的数据进行分类,并计算两个分类器之间的差异。这个差异被称为最大分类器差异。最大分类器差异越小,说明源域和目标域之间的分类性能差异越小。 最大分类器差异方法的优点在于它不需要任何标记信息,因此可以更好地解决无监督领域适应问题。此外,最大分类器差异方法可以应用于各种不同类型的数据,包括图像、语音等等。 最大分类器差异方法的一个缺点是,它仅仅关注了源域和目标域之间的分类性能差异,而没有考虑其他因素。另外,最大分类器差异方法的计算复杂度较高,需要对数据进行多次训练和分类,在实际应用中可能存在一定的困难。 ### 回答3: 最大分类器差异(Maximum Classifier Discrepancy,MCD)是一种用于非监督式域适应(Unsupervised Domain Adaptation,UDA)的优化方法,用于在源域和目标域之间的差异中减少域偏移和增加分类器的鲁棒性。MCD在同类和异类样本之间寻找主要差异,并通过对样本特征进行最大投影差异来实现最佳分离。 在非监督式域适应中,我们没有目标标签可用,因此不能使用传统的监督方法进行域适应。MCD通过最大化分类器在源域和目标域之间的差异,来找到两个领域之间的分界线,并提高分类器的泛化能力。具体来说,MCD使用最大平均散度(Maximum Mean Discrepancy,MMD)来测量源域和目标域之间的相似性和差异性,即通过学习使得源域和目标域的特征分布差异最大化的映射函数,来尽可能减少领域之间的差异。 MCD还可以用于不同类型的域适应问题,包括图像领域、语音领域和自然语言处理领域。在图像领域中,MCD可以用于目标域具有不同光照、角度和尺度情况的情况下的图像分类。在语音领域和自然语言处理领域中,MCD可以帮助训练具有更好鲁棒性的语音识别模型和文本分类模型。 总之,MCD是一种用于非监督式域适应的有效工具,它能够在源域和目标域之间的差异中找到主要的差异,并提高分类器的泛化能力。同时,MCD也是一个可扩展的方法,可以应用于不同领域和问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值