域适应分类:MCD论文笔记——Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

本文详细解析了《Maximum Classifier Discrepancy for Unsupervised Domain Adaptation》论文,介绍了如何利用两个分类器的差异性来改进域适应分类。通过最大化分类器之间的差异损失,检测并对齐源域与目标域特征,提升模型在目标域的分类性能。此方法在CVPR 2018上发表,并提供了源码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

域适应分类:MCD论文笔记——Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

论文题目:《Maximum Classifier Discrepancy for Unsupervised Domain Adaptation》

会议时间:IEEE Conference on Computer Vision and Pattern Recognition 2018 (CVPR 2018)

论文地址:https://openaccess.thecvf.com/content_cvpr_2018/papers/Saito_Maximum_Classifier_Discrepancy_CVPR_2018_paper.pdf

源码地址:https://github.com/mil-tokyo/MCD_DA

针对领域:域适应分类

主要思想

  现有的域适应方法大多数都是在不考虑样本类别的情况下对源域特征和目标域特征执行对齐,以对抗的方式训练特征提取器和分类器,最终让特征提取器匹配源域样本和目标域样本之间的特征。然而&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉萌新、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值