UNet学习笔记(主干网络+代码)

论文

image-20220302085731934

1 Introduction

​ 先前研究的一些缺点(sliding-window):

​ ① 运行速度慢

​ ② 需要权衡定位精度以及对上下文的应用

image-20220302090559432

​ 文章贡献:

​ ① 提出改进的全卷积网络

image-20220302092248612

​ 可以看出,该结构与FCN相似。然而不同的是,FCN在扩张过程中只使用了上采样,而UNet中的扩张过程利用到了卷积操作。同时,卷积操作没有使用padding,特征图会逐渐减小。

​ 其中,上采样可以让包含高级抽象特征低分辨率图片在保留高级抽象特征的同时变为高分辨率特征,再与左边低级表层特征高分辨率图片进行concatenate操作,从而实现了更加精确的定位,并且保证分割精度。

​ ② 文章同时提出了一个无缝分割策略(overlap-tile策略)从而适配任意大小的图片输入。具体做法是:预测右图黄色区域时,需要左侧的蓝色区域大小的图像作为输入。为了实现无缝分割,输入的尺寸应该保证长和宽均为偶数。

image-20220302093225183

​ ③ 对数据进行弹性伸缩数据增强。

2 Network Architecture

image-20220302140732361

​ 需要注意的是,网络最终的输出有两张特征图,实际上代表了二分类(前景与背景)。

3 Training

​ 网络利用交叉熵进行训练。

​ 并且,为了网络更好的学习分割边界信息(例如细胞之间的细小缝隙),首先利用形态学操作预先计算了一个权重图。

image-20220302141816498

image-20220302141936638

4 Data Augmentation

​ 除了基本的移动和旋转的数据增强方式,文中采用了弹性形变的数据增强方式。

​ 具体来说,在一个粗略的3×3的网格上使用随机位移向量产生平滑的变形。位移是从具有10个像素标准偏差的高斯分布中采样的。然后使用双三次插值计算每个像素的位移。

​ 在收缩路径的末端同时也采用了Dropout层,达到了进一步的隐式数据增强效果。

代码

""" Parts of the U-Net model """

import torch
import torch.nn as nn
import torch.nn.functional as F

class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        # 以下padding为1,特征图大小不会改变,与原文略有差别。
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.double_conv(x)


class Down(nn.Module):
    """Downscaling with maxpool then double conv"""

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2),
            DoubleConv(in_channels, out_channels)
        )

    def forward(self, x):
        return self.maxpool_conv(x)


class Up(nn.Module):
    """Upscaling then double conv"""

    def __init__(self, in_channels, out_channels, bilinear=True):
        super().__init__()

        # if bilinear, use the normal convolutions to reduce the number of channels
        # 使用普通的上采样进行扩张
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)  
            self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
        # 使用反卷积层进行扩张
        else:
            self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)  # 反卷积
            self.conv = DoubleConv(in_channels, out_channels)  # 普通卷积

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2])  # 补齐边界

        x = torch.cat([x2, x1], dim=1)  # 连接 
        return self.conv(x)


class OutConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(OutConv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)  # 输出层的1×1卷积

    def forward(self, x):
        return self.conv(x)
""" Full assembly of the parts to form the complete network """

class UNet(nn.Module):
    def __init__(self, n_channels, n_classes, bilinear=False):
        super(UNet, self).__init__()
        self.n_channels = n_channels
        self.n_classes = n_classes
        self.bilinear = bilinear

        self.inc = DoubleConv(n_channels, 64)
        self.down1 = Down(64, 128)
        self.down2 = Down(128, 256)
        self.down3 = Down(256, 512)
        factor = 2 if bilinear else 1
        self.down4 = Down(512, 1024 // factor)
        self.up1 = Up(1024, 512 // factor, bilinear)
        self.up2 = Up(512, 256 // factor, bilinear)
        self.up3 = Up(256, 128 // factor, bilinear)
        self.up4 = Up(128, 64, bilinear)
        self.outc = OutConv(64, n_classes)
        self.dropout = nn.Dropout(0.5)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x5 = self.dropout(x5) # dropout层
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        logits = self.outc(x)
        return logits
    
x = torch.randn(1, 3, 256, 256)
net = UNet(3, 2)
x = net(x)

# 特征大小的变化
# torch.Size([1, 64, 256, 256])
# torch.Size([1, 128, 128, 128])
# torch.Size([1, 256, 64, 64])
# torch.Size([1, 512, 32, 32])
# torch.Size([1, 512, 16, 16])
# torch.Size([1, 256, 32, 32])
# torch.Size([1, 128, 64, 64])
# torch.Size([1, 64, 128, 128])
# torch.Size([1, 64, 256, 256])
# torch.Size([1, 2, 256, 256])
  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
UNet3+是一种基于UNet的图像分割网络模型,它在UNet的基础上进行了改进和优化。UNet3+的代码实现可以使用PyTorch框架来完成。 UNet3+的代码实现主要包括以下几个部分: 1. 模型结构:UNet3+的模型结构是由编码器和解码器组成的。编码器部分负责提取图像特征,解码器部分则将提取到的特征进行上采样和融合,最终生成分割结果。在UNet3+中,还引入了多个尺度的特征融合模块,以提高分割效果。 2. 损失函数:常用的损失函数包括交叉熵损失函数和Dice损失函数。交叉熵损失函数用于衡量预测结果与真实标签之间的差异,而Dice损失函数则更加关注目标区域的重叠度。 3. 数据预处理:在训练过程中,需要对输入图像进行预处理,如归一化、裁剪、缩放等操作,以便更好地适应网络模型的输入要求。 4. 训练过程:训练过程包括数据加载、前向传播、损失计算、反向传播和参数更新等步骤。可以使用PyTorch提供的优化器(如Adam、SGD)来更新网络参数。 5. 测试过程:测试过程主要包括对输入图像进行前向传播,得到分割结果,并进行后处理(如阈值处理、连通域分析等)以得到最终的分割图像。 以下是一个简单的UNet3+代码实现的示例: ```python import torch import torch.nn as nn # 定义UNet3+模型 class UNet3Plus(nn.Module): def __init__(self): super(UNet3Plus, self).__init__() # 定义编码器和解码器等模块 def forward(self, x): # 前向传播过程 # 定义损失函数 criterion = nn.CrossEntropyLoss() # 定义优化器 optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练过程 for epoch in range(num_epochs): # 数据加载、前向传播、损失计算、反向传播、参数更新等步骤 # 测试过程 with torch.no_grad(): # 输入图像前向传播,得到分割结果,并进行后处理 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值