支持向量机(Support Vector Machine, SVM):最一般情况(非线性)公式推导

看博客或教材时,总觉得推导写的太简单,所以这里自己推导一下支持向量机的公式。部分推导会写在纸上,贴图上来,因为太长了,用latex敲实在是麻烦,如果哪里看不清楚或者哪里有误,还望评论指出,我及时修改。会不断更新的。

目录

三种基本的SVM:

三者关系:

核技巧:

推导

超平面

证明wT是法向量

证明向量指向的方向就是正实例的一侧

推导点到平面距离公式

优化函数的构建

含有不等式约束的优化

SMO


 


三种基本的SVM:

分类 使用场景 备注
线性可分SVM 数据完全线性可分 最原始、最基本的SVM
线性SVM 数据大多线性可分 加入一个扰动\varepsilon _{i}
非线性SVM 数据线性不可分 引入核函数,最一般情况

三者关系:

非线性SVM的核函数K(x,z)=x^{T} \cdot z,其就简化成了线性SVM;

线性SVM的扰动\varepsilon _{i}恒等于0时,其就简化成了线性可分SVM;

核技巧:

对于数据线性不可分情况,基本思路是引入映射函数\varphi (x),把数据映射到更高维空间,在更高维空间进行分类,核函数定义为K(x,z)=\varphi(x) \cdot \varphi (z),即两个向量在特征空间(映射后空间)的内积,这种定义内积却不直接定义映射函数\varphi (x)的技巧即为核技巧。为何这样定义,看后面推导你就会发现,所有用到映射函数\varphi (x)的场景,全是内积。

推导

下面推导最一般情况下的SVM(含有核函数和扰动)。

输入:

数据(x_{i},y_{i}),i=1,2……m

求解:

超平面w^{T}\varphi (x_{i})+b,也就是求解w^{T}b

输出:

y=sign(w^{T}\varphi (x_{i})+b)

超平面

证明wT是法向量

这里提到的超平面长这样w^{T}x+b=0,我比较熟悉的平面长这样y=a^{T}x+b,经过移项变成[a^{T},-1]\begin{bmatrix} x \\ y \end{bmatrix}+b=0,所以w^{T}x+b=0中的x已经包含了x,y,即特征空间的所有坐标值,我们利用的是整个特征空间确定点与平面的关系,w^{T}x+b=0中虽然叫做x,但是却包含了y。

证明向量$w^T$指向的方向就是正实例的一侧

\varphi (x_{1})w^{T}\varphi (x)+b=0平面上的点,该平面把特征空间分成两侧,\varphi (x_{2})为向量w^{T}指向一侧的点。

w^{T}\varphi (x_{1})+b=0,设w^{T}\varphi (x_{2})+b=a

上述两式相减得到w^{T}(\varphi (x_{1})-\varphi (x_{2}))=-a

由于w^{T}(\varphi (x_{1})-\varphi (x_{2}))<0

所以w^{T}\varphi (x_{2})+b=a>0

下图以二维为例。

推导点到平面距离公式

定义函数间隔为y_{i}(w^{T}\varphi (x_{i})+b),不难看出这是一个相对距离,去掉了点到超平面的距离公式中的分母,只要该数据点的分类判定正确,y_{i}(w^{T}\varphi (x_{i})+b)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值