AUC:直观理解AUC为何会对正负样本数分布不均匀情况鲁棒

本文通过分析ROC曲线与AUC的概念,解释了AUC在面对正负样本分布不均匀时的鲁棒性。通过示例说明,无论正样本数量增减,只要样本是随机采样的,ROC曲线及AUC保持稳定。相比之下,PR曲线在正负样本数量变化时则不具备这种鲁棒性。
摘要由CSDN通过智能技术生成


  AUC长用来衡量分类器,是一个十分常用的分类器衡量指标。AUC对正负样本数分布不均匀情况具有鲁棒性,这篇blog直观的看一下为何AUC会具有如此的特性。

ROC与AUC

  AUC是ROC曲线与横坐标围成的面积,如下(图是抄别人的):

  根据混淆矩阵

  ROC曲线的横轴FPR,和纵轴TPR分别定义为:

F P R = F P F P + T N FPR=\frac{FP}{FP+TN} FPR=FP+TNFP

T P R = T P T P + F N TPR=\frac{TP}{TP+FN} TPR=TP+FNTP

所以,FPR和TPR的分母分别是负样本个数和真样本个数,当样本空间确定时,FPR和TPR的分母都是定值。假设我们有M个样本,根据模型预估得到了M个预估分,根据预估分从高到低排序,在设定一个阈值指针,阈值指针从最高分的样本开始向最低分移动,每次移动后,以该阈值指针为分割点,大于等于该阈值指针指向样本预估分的样本,为预测正例,小于的

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值