AUC长用来衡量分类器,是一个十分常用的分类器衡量指标。AUC对正负样本数分布不均匀情况具有鲁棒性,这篇blog直观的看一下为何AUC会具有如此的特性。
ROC与AUC
AUC是ROC曲线与横坐标围成的面积,如下(图是抄别人的):
根据混淆矩阵
ROC曲线的横轴FPR,和纵轴TPR分别定义为:
F P R = F P F P + T N FPR=\frac{FP}{FP+TN} FPR=FP+TNFP
T P R = T P T P + F N TPR=\frac{TP}{TP+FN} TPR=TP+FNTP
所以,FPR和TPR的分母分别是负样本个数和真样本个数,当样本空间确定时,FPR和TPR的分母都是定值。假设我们有M个样本,根据模型预估得到了M个预估分,根据预估分从高到低排序,在设定一个阈值指针,阈值指针从最高分的样本开始向最低分移动,每次移动后,以该阈值指针为分割点,大于等于该阈值指针指向样本预估分的样本,为预测正例,小于的