1.项目目录
本实验使用的数据集是蚂蚁蜜蜂数据集蚂蚁蜜蜂数据集ants & bees
下载完成后,对数据集进行解压,整个项目的组织结构如下所示
P7_dataset1.py是我们本次实验的python脚本
打开ants目录下面就是所有的文件名
2.实现框架
Dataset中主要有三个需要我们重写的函数,__init__(), __getitem__(), __len__()
,这个也是面试的时候经常被问的问题,下面讲解主要的实现步骤
- 首先定义自己的一个类,继承自Dataset
- 实现
__init__(self, root_dir, label_dir)
函数,分别传进数据的目录以及数据标签(主要用于实现对数据集的定位) - 实现
__getitem__(self, item)
传进用户的定位标签,用户可以通过使用dataset[item]
来直接从对应数据集标签目录中获取想要的数据 - 实现
__len__(self)
主要返回数据集的长度 - dataset之间的相加可以直接用 “+” 号相加,获取一个更大的数据集
3. 实现代码
主要以获取图片为例子,有详细注释
# -*- coding:utf-8 -8-
"""
Author: Leung
Date: 2022--10--27
"""
from torch.utils.data import Dataset
from PIL import Image
import os
class MyData(Dataset):
def __init__(self, root_dir, label_dir):
# 传入图片文件夹,该文件夹名字对应的就是这类数据集的label
self.root_dir = root_dir # 数据集路径
self.label_dir = label_dir # 标签名字
self.path = os.path.join(self.root_dir, self.label_dir) # 将两个名字字符串相结合,变成一个完整的路径名称
self.img_path = os.listdir(self.path) # 将路径名称变为一个列表,方便后面getitem函数进行索引操作
# 该列表存放的是整个目录下面所有的文件名
def __getitem__(self, item):
img_name = self.img_path[item] # 利用上面初始化函数建立的函数
img_path_name = os.path.join(self.path, img_name) # 同上,目录相加
img = Image.open(img_path_name) # 打开文件图片,方便后续返回
label = self.label_dir # 每个图片的标签
return img, label # 返回图片 + 标签的形式
def __len__(self):
return len(self.img_path)
root_dir = "data/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
ants_dataset = MyData(root_dir, label_dir=ants_label_dir) # 蚂蚁数据集
bees_dataset = MyData(root_dir, label_dir=bees_label_dir) # 蜜蜂数据集
train_dataset = ants_dataset + bees_dataset # 直接相加,123是蚂蚁图片,124是蜜蜂图片
# 从创建的实例中获取数据
img123_ants, label_123 = train_dataset[123]
img124_bees, label_124 = train_dataset[124]
# 展示图片
img123_ants.show()
img124_bees.show()
程序运行结果
红字为注释
写在最后
各位看官,都看到这里了,麻烦动动手指头给博主来个点赞8,您的支持作者最大的创作动力哟!
注:官方文档说了很多,网上也有很多精彩的教程,我希望结合土堆的教学视频PyTorch深度学习快速入门教程谈一下自己对Dataset类的理解
才疏学浅,若有纰漏,恳请斧正
本文章仅用于各位作为学习交流之用,不作任何商业用途,若涉及版权问题请速与作者联系,望悉知