改进YOLOv Tiny系列:引入改进的特征融合网络BiFPN,提升特征融合效果,有效提升计算机视觉性能

本文介绍了如何通过引入改进的特征融合网络BiFPN提升YOLOv Tiny系列算法的检测精度。BiFPN结合底层和顶层特征,增强多尺度信息融合,适用于目标检测、实例分割等计算机视觉任务。通过PyTorch实现的模型展示,BiFPN能有效提高目标检测的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv Tiny系列是一种轻量级的目标检测算法,在计算机视觉领域取得了广泛的应用。然而,为了在保持高效性能的同时提升检测精度,我们提出了一种改进的特征融合网络BiFPN,以更好地融合有效特征并提高目标检测的准确性。

BiFPN是一种引入了双向路径的特征融合网络。它通过将底层特征与顶层特征相结合,实现了多层级的特征融合。这种特征融合方式能够更好地捕捉目标检测任务所需的不同尺度和语义信息,从而提高检测精度。

以下是使用PyTorch实现改进的YOLOv Tiny系列算法,其中包括了BiFPN的特征融合网络:

import torch
import torch.nn as nn

class BiFPNBlock(nn.Module)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值