YOLOv Tiny系列是一种轻量级的目标检测算法,在计算机视觉领域取得了广泛的应用。然而,为了在保持高效性能的同时提升检测精度,我们提出了一种改进的特征融合网络BiFPN,以更好地融合有效特征并提高目标检测的准确性。
BiFPN是一种引入了双向路径的特征融合网络。它通过将底层特征与顶层特征相结合,实现了多层级的特征融合。这种特征融合方式能够更好地捕捉目标检测任务所需的不同尺度和语义信息,从而提高检测精度。
以下是使用PyTorch实现改进的YOLOv Tiny系列算法,其中包括了BiFPN的特征融合网络:
import torch
import torch.nn as nn
class BiFPNBlock(nn.Module)