YOLOX加强特征提取网络Panet分析

在上一篇文章中,分享了YOLOX的CSPDarknet网络,详见YOLOX backbone——CSPDarknet的实现

在CSPDarknet中,有三个层次的输出, 分别是dark5(20x20x1024)、dark4(40x40x512)、dark3(80x80x256)。这三个层次的输出,会进入一个加强特征提取网络Panet,进一步进行特征提取,见下图红框标出来的部分:

Panet基本思想是,将深层特征进行上采样,并与浅层特征进行融合(见图上1~6标注部分),融合后的浅层特征再进行下采样,然后再与深层特征融合(见图上6~10部分)。

在YOLOX的官方实现代码上,Panet的实现在yolo_pafpn.py文件中的。结合上面数字标注,对官方代码进行了注释:

class YOLOPAFPN(nn.Module):
    """
    YOLOv3 model. Darknet 53 is the default backbone of this model.
    """

    def __init__(
        self,
        depth=1.0,
        width=1.0,
        in_features=("dark3", "dark4", "dark5"),
        in_channels=[256, 512, 1024],
        depthwise=False,
        act="silu",
    ):
        super().__init__()
        self.backbone = CSPDarknet(depth, width, depthwise=depthwise, act=act)
        self.in_features = in_features
        self.in_channels = in_channels
        Conv = DWConv if depthwise else BaseConv

        self.upsample = nn.Upsample(scale_factor=2, mode="nearest")

        # 20x20x1024 -> 20x20x512
        self.lateral_conv0 = BaseConv(
            int(in_channels[2] * width), int(in_channels[1] * width), 1, 1, act=act
        )

        # 40x40x1024 -> 40x40x512
        self.C3_p4 = CSPLayer(
            int(2 * in_channels[1] * width),
            int(in_channels[1] * width),
            round(3 * depth),
            False,
            depthwise=depthwise,
            act=act,
        )  # cat

        # 40x40x512 -> 40x40x256
        self.reduce_conv1 = BaseConv(
            int(in_channels[1] * width), int(in_channels[0] * width), 1, 1, act=act
        )

        # 80x80x512 -> 80x80x256
        self.C3_p3 = CSPLayer(
            int(2 * in_channels[0] * width),    # 2x256
            int(in_channels[0] * width),        # 256
            round(3 * depth),
            False,
            depthwise=depthwise,
            act=act,
        )

        # bottom-up conv
        # 80x80x256 -> 40x40x256
        self.bu_conv2 = Conv(
            int(in_channels[0] * width), int(in_channels[0] * width), 3, 2, act=act
        )

        # 40x40x512 -> 40x40x512
        self.C3_n3 = CSPLayer(
            int(2 * in_channels[0] * width),     # 2*256
            int(in_channels[1] * width),         # 512
            round(3 * depth),
            False,
            depthwise=depthwise,
            act=act,
        )

        # bottom-up conv
        # 40x40x512 -> 20x20x512
        self.bu_conv1 = Conv(
            int(in_channels[1] * width), int(in_channels[1] * width), 3, 2, act=act
        )

        # 20x20x1024 -> 20x20x1024
        self.C3_n4 = CSPLayer(
            int(2 * in_channels[1] * width),      # 2*512
            int(in_channels[2] * width),          # 1024
            round(3 * depth),
            False,
            depthwise=depthwise,
            act=act,
        )

    def forward(self, input):
        """
        Args:
            inputs: input images.

        Returns:
            Tuple[Tensor]: FPN feature.
        """

        #  backbone
        out_features = self.backbone(input)
        features = [out_features[f] for f in self.in_features]
        [x2, x1, x0] = features

        # 第1步,对输出feature map进行卷积
        # 20x20x1024 -> 20x20x512
        fpn_out0 = self.lateral_conv0(x0)  # 1024->512/32

        # 第2步,对第1步中输出的feature map进行上采样
        # Upsampling, 20x20x512 -> 40x40x512
        f_out0 = self.upsample(fpn_out0)  # 512/16

        # 第3步,concat + CSP layer
        # 40x40x512 + 40x40x512 -> 40x40x1024
        f_out0 = torch.cat([f_out0, x1], 1)  # 512->1024/16
        # 40x40x1024 -> 40x40x512
        f_out0 = self.C3_p4(f_out0)  # 1024->512/16

        # 第4步,对第3步输出的feature map进行卷积
        # 40x40x512 -> 40x40x256
        fpn_out1 = self.reduce_conv1(f_out0)  # 512->256/16

        # 第5步,继续上采样
        # 40x40x256 -> 80x80x256
        f_out1 = self.upsample(fpn_out1)  # 256/8

        # 第6步,concat+CSPLayer,输出到yolo head
        # 80x80x256 + 80x80x256 -> 80x80x512
        f_out1 = torch.cat([f_out1, x2], 1)  # 256->512/8
        # 80x80x512 -> 80x80x256
        pan_out2 = self.C3_p3(f_out1)  # 512->256/8

        # 第7步,下采样
        # 80x80x256 -> 40x40x256
        p_out1 = self.bu_conv2(pan_out2)  # 256->256/16

        # 第8步,concat + CSPLayer, 输出到yolo head
        # 40x40x256 + 40x40x256 = 40x40x512
        p_out1 = torch.cat([p_out1, fpn_out1], 1)  # 256->512/16
        # 40x40x512 -> 40x40x512
        pan_out1 = self.C3_n3(p_out1)  # 512->512/16

        # 第9步, 继续下采样
        # 40x40x512 -> 20x20x512
        p_out0 = self.bu_conv1(pan_out1)  # 512->512/32

        # 第10步,concat + CSPLayer, 输出到yolo head
        # 20x20x512 + 20x20x512 -> 20x20x1024
        p_out0 = torch.cat([p_out0, fpn_out0], 1)  # 512->1024/32
        # 20x20x1024 -> 20x20x1024
        pan_out0 = self.C3_n4(p_out0)  # 1024->1024/32

        outputs = (pan_out2, pan_out1, pan_out0)
        return outputs

参考:Pytorch 搭建自己的YoloX目标检测平台(Bubbliiiing 深度学习 教程)_哔哩哔哩_bilibili

### 回答1: PyTorch YOLO是一种利用PyTorch深度学习框架实现的物体检测算法,能够有效地检测图像中的目标物体。而裂缝检测是检测地表或结构材料中的裂缝并进行分类的任务,例如混凝土结构中的裂缝、沥青路面中的裂缝等。 在使用PyTorch YOLO进行裂缝检测任务时,需要先准备训练数据集,包括裂缝图像和对应标注信息。然后使用PyTorch YOLO网络模型进行训练,通过迭代优化模型参数,让其能够准确地检测出裂缝,并进行分类和定位。 当模型训练完成后,可以使用该模型对新的未知图像进行裂缝检测。通过将图像输入模型,模型会输出检测结果,包括裂缝位置和分类信息等,从而实现对裂缝的有效检测。 PyTorch YOLO能够快速准确地进行裂缝检测,具有很高的效率和精度。同时,深度学习算法的不断优化也为裂缝检测提供了更多的可能性,有助于实现对裂缝的更加准确和全面的检测。 ### 回答2: PyTorch YOLO(You Only Look Once)模型是一种基于深度学习的目标检测算法,可以对图像或视频中的目标进行快速准确的定位和分类。而裂缝检测是指利用计算机视觉技术,检测道路、建筑物等基础设施中的裂缝缺陷并进行量化分析的过程。 在裂缝检测中,PyTorch YOLO模型的主要功能是识别裂缝缺陷的位置和类型。该模型使用卷积神经网络(CNN)对输入图像进行特征提取和检测,然后通过检测框(bounding boxes)对裂缝缺陷进行准确定位。 为了训练PyTorch YOLO模型进行裂缝检测,首先需要收集大量带有裂缝缺陷的图像数据,并进行标注。然后,使用训练数据训练模型,优化模型参数,提高模型的检测准确率和鲁棒性。 在实际应用中,PyTorch YOLO模型可以用于道路、桥梁、建筑物等基础设施的裂缝检测,有效提高了检测效率和精确度,降低了人工检测的工作量和成本,并有助于及时发现和修复基础设施中的缺陷,保障人民生命财产安全。 ### 回答3: Pytorch YOLO裂缝检测是一种基于深度学习的图像识别技术,目的是检测图像中可能存在的裂缝区域。该技术将深度学习算法与卷积神经网络技术结合,通过训练模型识别裂缝图像特征,从而准确地检测出裂缝位置。同时,选用Pytorch框架可以加快模型训练速度,并且对于模型的更改和优化也能够进行高效的操作。 在实际应用中,裂缝检测技术的发展对于维护基础设施、保障人民生命财产安全、提高公共安全等方面都具有重要意义。例如:在道路建设、桥梁监测、隧道维护、大坝安全预警等方面,裂缝检测技术都能够发挥重要作用。 总之,Pytorch YOLO裂缝检测技术的应用前景广阔,随着科技的不断发展,该技术将在现实生活中产生越来越多的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值