[笔记] Convex Optimization 2015.09.23

Positive (semi)definite metrics

  • Notations: ASn means ARn×n , A symmetric
    A0 or ASn+ means A positive semidefinite (xTAx0,xRn)
    A>0 or ASn++ means A positive definite (xTAx>0,xRn{0})
  • Reminder: A matrix A is symmetric iff it is orthogonally diagonalizable: A=PTDP,PP=I
  • Facts: A0D0 all eigenvalues of A are nonnegative
    A>0D>0 all eigenvalues of A are positive
  • Proof: If D0 , then D0,s.t.D=D2
    Then xTAx=xTPTDDPx=(DPx)TDPx=DPx220

  • Notations: Outer product (of x,y ): xyT=x[y]=x1y1xny1x1ynxnyn
    Let A=[aT1aTn]T , B=[b1...bn]
    Then BA=[b1bn]aT1aTn=b1aT1++bnaTn

  • Lemma: If A0 and Aii=0 , then the ith row and column of A are zero.

  • Picture:
    0000000

  • Proof: WLOG i=1 , If A1j0 , then let x=e1+λej .
    Then xTAx=λ2Ajj+2λA1j
    ddλxTAx=λ0(2λAjj+2A1j)|λ=0=2A1j0,(xTAx)|λ=0=0

  • Lemma: Any matrix of the form BTB is positive semidefinite, BRm×n

  • Proof: Trivial ( xTBTBx=Bx22 )
  • Fact: For every ASn+ there exists BRn×n , B upper triangle, such that A=BTB (Cholesky decomposition)
    BTB=||||||||||=A=
    ||||[]+|||[]+=
    ++...+
  • Proof: By lemma, can assume A110 , in fact, can assume that A11=1 , So
    A=[1a12aT12A22],B=1aT12
    [1a12][1aT12]=[1a12aT12a12aT12]
    Have A[1a12][1aT12]=[000A22a12aT12]
    So need to show that:
    S=A22a12aT12Sn1+ is positive semidefinite
    Let xRn1 ,
    Then xTSx=xTAxxTa12aT12x=xTA(aT12x)2
    Let y=aT12xx,
    yTAy=(aT12x)2+xTA22x(aT12x)2(aT12x)2=xTSx0

  • Basic Fact: xxTAx is a norm if A>0

  • Proof: x+yx+y
    (x+y)TA(x+y)xTAx+yTAy
    xTAx+yTAy+2xTAyxTAx+yTAy+2xTAxyTAy
    (yATx)(yATx)(xTAx)(yTAy)
    Let z=Bx,w=By ,
    Then (wTz)(wTz)(zTz)(wTw)=z22w22

  • Basic Fact: The function xxTAx is convex if A0

  • Proof: Same as for the function x2 (At some point use that (x+y)TA(x+y)0 )

  • Definition: An ellipsod in Rn is a set of the form E={x:(xx0)TA1(xx0)1}
    for some A>0
    Have A=PTDP , put xx0=PTu
    A1=PTD1P,(uTP)A1(PTu)=uTD1u=ni=11λiu2i

  • Lemma: A set E is an ellipsoid iff and only if there exists an invertible matrix ZRn×n,s.t.E={x0+Zu:u21}
  • Proof: {x0+Zu:u21}={y:Z1(yx0)21}={y:(yx0)TZ1TZ1(yx0)1}

Hyperplane Seperation Theorem:
- Theorem: If C,DRn are convex sets, disjoint, then there exists aRn0,bR,s.t.aTxb,xC;aTxb,xD
- Proof: when C,D are closed and D is bonded,
Let d(C,D)=infxC,yDxy2,
Then (xn)n=1C,(yn)n=1D,s.t.limnxnyn2=d(C,D)
Even, can assume (yn)n=1 is convergent.
Then limnynD because D is closed
can also assume that xn convergent
Now, let c=limnxnC,d=limnynD
Then cd2=limnxnyn2=d(C,D)>0
Choose a=dc,b=(dc)T(d+c2)
Assume by contradiction that x0D,s.t.aTx0<b
Hope is that some point of form d+λ(x0d) is even closer to c than d is,
for λ[0,1],(d+λ(x0d)c)T(d+λ(x0d)c)
=dTd2dTc+cTc+2λ(x0d)T(dc)+λ2(x0d)T(x0d)
=dc22+2λ(x0d)T(dc)+λ2(x0d)T(x0d)
And (dc)T(dc2)=dc2220,aTx0<b
(x0d)T(dc)T(d+c2)<0
So (x0d)T(dc)T(d+c2)(dc)T(dc2)<0
λ=0,ddλ=(x0d)T(dc)+2λ(x0d)T(x0d)=(x0d)T(dc)<0

minAxb22 where ARm×n,bRm
Have Axb22=(Axb)T(Axb)=xTATAx2bTAx+bTb
- Definition: f(x1,,xn)=[x1f,...,xnf]T
bTb=0,2bTAx=2ATb,xTATAx=2ATAx(ATAxATb=0)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值