医疗影像分割 | 使用SAM2-UNet训练自己的数据集

### 使用 SAM 模型训练自定义数据集 为了使用 Segment Anything Model (SAM) 训练自定义数据集,需遵循一系列特定步骤来准备环境、预处理数据并调整模型配置。 #### 准备工作 确保安装必要的依赖库和工具链。对于 Python 环境而言,推荐创建独立的虚拟环境以避免版本冲突。可以利用 `conda` 或者 `venv` 创建新的Python环境[^1]。 ```bash conda create --name sam_env python=3.8 conda activate sam_env pip install -r requirements.txt ``` 其中 `requirements.txt` 文件应包含所有必需包及其兼容版本号。 #### 数据预处理 针对不同类型的输入数据,可能需要执行不同的转换操作。特别是当涉及医学影像或其他特殊格式文件时,如 `.nii.gz` 格式的三维体素数据,则要将其转化为二维切片保存为 `.npy` 数组形式以便于后续加载与处理[^2]。 ```python import nibabel as nib import numpy as np def nifti_to_npy(nifti_path, output_dir): img = nib.load(nifti_path) data = img.get_fdata() for i in range(data.shape[-1]): slice_data = data[:, :, i] np.save(f"{output_dir}/slice_{i}.npy", slice_data) # 调用函数实例化转化过程 nifti_to_npy('path/to/your/nifti/file.nii.gz', 'output/directory') ``` 此段代码展示了如何读取 NIfTI 文件并将每一层存储为单独的 NumPy数组文件。 #### 自定义数据集适配 为了让 SAM 接受新类型的数据作为输入,通常还需要编写额外的代码片段用于构建适合该架构使用的 Dataset 类以及 DataLoader 实例对象。这一步骤涉及到定义具体的提示机制——即通过点、边界框或者两者的组合向网络提供指导信息[^3]。 ```python from torch.utils.data import Dataset, DataLoader import os import numpy as np class CustomDataset(Dataset): def __init__(self, root_dir, transform=None): self.root_dir = root_dir self.transform = transform self.files = [f for f in os.listdir(root_dir) if f.endswith('.npy')] def __len__(self): return len(self.files) def __getitem__(self, idx): file_name = os.path.join(self.root_dir, self.files[idx]) image = np.load(file_name).astype(np.float32) sample = {'image': image} if self.transform: sample = self.transform(sample) return sample dataset = CustomDataset(root_dir='processed_slices/') dataloader = DataLoader(dataset, batch_size=4, shuffle=True) ``` 上述代码实现了简单的 PyTorch 风格的数据集类,并设置了基本参数。 #### 微调 SAM 模型 最后,在完成以上准备工作之后就可以着手修改源码中的超参设置部分了;比如改变默认的学习率、迭代次数等选项,从而更好地适应当前任务需求。同时也要注意检查官方文档获取更多有关 API 的细节说明。 ```yaml train: epochs: 50 lr_scheduler: type: CosineAnnealingLR T_max: ${train.epochs} eta_min: 0.0 optimizer: name: AdamW params_lr: 0.0001 ``` 这里给出了一种常见的优化器配置方案样例。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程日记✧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值