MIT 18.06 linear algebra 第三课笔记

MIT 18.06 linear algebra 第三课笔记

第三课的课程要点如下:
- Matrix multiplication
- Inverse of A
- Gauss-Jordan/find A1 A − 1
-

  • 矩阵相乘的第一种方法:
    假设 AB=C A B = C ,其中 C C 中的某一个元素cij是由矩阵 A A rowi点乘以矩阵 B B columnj得到的。比如 C34 C 34 :
    C34=(row3ofA)(column4ofB)=a31b14+a32b24++a3nbn4=k=1na3kbk4(1) (1) C 34 = ( r o w 3 o f A ) ( c o l u m n 4 o f B ) = a 31 b 14 + a 32 b 24 + + a 3 n b n 4 = ∑ k = 1 n a 3 k b k 4
  • 矩阵相乘的第二种方法:考虑整列
    矩阵 AB=C A B = C ,其中 C C 中的任意一列都是都是对A中列的线性组合,其中组合方式有 B B 中的相应列决定。
  • 矩阵相乘的第三种方法:考虑行
    矩阵AB=C,其中 C C 的每一行都是矩阵B中关于行的线性组合,其中组合方式是由 A A 中的相应决定。
  • 第四种方式
    矩阵AB=C,可以看作是 A A 的中列乘以B中的行。然后求和。例子如下所示:

AB A B =sum of (col of A A )(row of B)

234789[1060]=234[16]+789[00](2) (2) [ 2 7 3 8 4 9 ] [ 1 6 0 0 ] = [ 2 3 4 ] [ 1 6 ] + [ 7 8 9 ] [ 0 0 ]

在矩阵乘法中,还可以使用分快法:

[A1A3A2A4][B1B3B2B4]=[A1B1+A2B3A3B1+A4B3A1B2+A2B4A3B2+A4B4](3) (3) [ A 1 A 2 A 3 A 4 ] [ B 1 B 2 B 3 B 4 ] = [ A 1 B 1 + A 2 B 3 A 1 B 2 + A 2 B 4 A 3 B 1 + A 4 B 3 A 3 B 2 + A 4 B 4 ]

矩阵的逆(这里仅仅讨论方阵)
如果矩阵可逆(invertible)的话 AA1=I=A1A A A − 1 = I = A − 1 A 。如果 A A 不是方阵,左逆是不等于右逆的。
如果一个矩阵不可逆的话,我们是可以找到一个非0的向量 x x ,使得Ax=0

求一个矩阵逆的方法:

[1237][acbd][1001](4) (4) [ 1 3 2 7 ] [ a b c d ] [ 1 0 0 1 ]

如果要求出 a,b,c,d a , b , c , d 的话,我们可以通过考虑列的方式来求:
a[12]+b[37]=[10](5) (5) a [ 1 2 ] + b [ 3 7 ] = [ 1 0 ]

c[12]+d[37]=[01](6) (6) c [ 1 2 ] + d [ 3 7 ] = [ 0 1 ]

上式(5,6)其实相当于两个线性方程,如果用高斯消元法的话,一次只能解决一个方程组。
下面是 Gauss-Jordan方法,能同时解决多个方程组:
[12371001](7) (7) [ 1 3 1 0 2 7 0 1 ]

只要把上面的式(7)左边化成单位矩阵,那么右半边自然就是矩阵的逆了。对 [A|I] [ A | I ] 做线性变换, A A 变为I,那么对 A A 做变换的矩阵E自然就是矩阵A的逆了。

添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值