MIT 18.06 linear algebra 第三课笔记
第三课的课程要点如下:
- Matrix multiplication
- Inverse of A
- Gauss-Jordan/find
A−1
A
−
1
-
- 矩阵相乘的第一种方法:
假设 AB=C A B = C ,其中 C C 中的某一个元素是由矩阵 A A 的点乘以矩阵 B B 的得到的。比如 C34 C 34 :
C34=(row3ofA)(column4ofB)=a31b14+a32b24++a3nbn4=∑k=1na3kbk4(1) (1) C 34 = ( r o w 3 o f A ) ( c o l u m n 4 o f B ) = a 31 b 14 + a 32 b 24 + + a 3 n b n 4 = ∑ k = 1 n a 3 k b k 4 - 矩阵相乘的第二种方法:考虑整列
矩阵 AB=C A B = C ,其中 C C 中的任意一列都是都是对中列的线性组合,其中组合方式有 B B 中的相应列决定。 - 矩阵相乘的第三种方法:考虑行
矩阵,其中 C C 的每一行都是矩阵中关于行的线性组合,其中组合方式是由 A A 中的相应行决定。 - 第四种方式
矩阵,可以看作是 A A 的中列乘以中的行。然后求和。例子如下所示:
AB A B =sum of (col of A A )(row of )
在矩阵乘法中,还可以使用分快法:
矩阵的逆(这里仅仅讨论方阵)
如果矩阵可逆(invertible)的话
AA−1=I=A−1A
A
A
−
1
=
I
=
A
−
1
A
。如果
A
A
不是方阵,左逆是不等于右逆的。
如果一个矩阵不可逆的话,我们是可以找到一个非的向量
x
x
,使得。
求一个矩阵逆的方法:
如果要求出 a,b,c,d a , b , c , d 的话,我们可以通过考虑列的方式来求:
上式(5,6)其实相当于两个线性方程,如果用高斯消元法的话,一次只能解决一个方程组。
下面是 Gauss-Jordan方法,能同时解决多个方程组:
只要把上面的式(7)左边化成单位矩阵,那么右半边自然就是矩阵的逆了。对 [A|I] [ A | I ] 做线性变换, A A 变为,那么对 A A 做变换的矩阵E自然就是矩阵的逆了。