MIT线性代数
文章平均质量分 81
Light_blue_love
这个作者很懒,什么都没留下…
展开
-
MIT 18.06 linear algebra 第四课笔记
MIT 18.06 linear algebra 第四课笔记第四课的课程要点如下:Inverse of ABAB ,ATA^{T}product of elimination matricesA=LUA=LU(no row exchange)假设AA和BB均是可逆矩阵,ABAB的逆为B−1A−1B^{-1}A^{-1},因为ABB−1A−1=IABB^{-1}A^{-1}=原创 2018-01-12 16:52:44 · 396 阅读 · 0 评论 -
MIT 18.06 linear algebra 第十八讲笔记
MIT 18.06 linear algebra 第十八讲笔记第十八课课程要点:Determinant detA=|A|detA=|A|detA=|A|Properties 1-10课程首先介绍了关于行列式的十大性质:① detI=1detI=1detI=1②交换一个行列式的两行,行列式的值会变号。如置换矩阵detP=1or−1detP=1or−1detP...原创 2018-03-10 13:55:36 · 448 阅读 · 0 评论 -
MIT 18.06 linear algebra 第二十四讲笔记
MIT 18.06 linear algebra 第二十四讲笔记第二十四讲课程要点:Markov matricesSteady StateFourier Series & ProjectionsA=⎡⎣⎢0.10.20.70.010.9900.30.30.4⎤⎦⎥A=[0.10.010.30.20.990.30.700.4]A= \begin{bmatrix...原创 2018-03-17 13:17:20 · 560 阅读 · 0 评论 -
MIT 18.06 linear algebra 第十九讲笔记
MIT 18.06 linear algebra 第十九讲笔记第十九课课程要点Formula for det A(n! terms)Cofactor formulaTridiagonal Matrix求解行列式的方法:以二阶行列式为例 ∣∣∣acbd∣∣∣=∣∣∣ac0d∣∣∣+∣∣∣0cbd∣∣∣+∣∣∣ac00∣∣∣+∣∣∣dd00∣∣∣+∣∣∣0cb0∣∣∣+∣...原创 2018-03-12 10:25:17 · 380 阅读 · 0 评论 -
MIT 18.06 linear algebra 第二十五讲笔记
MIT 18.06 linear algebra 第二十五讲笔记Review for quiz 2Q=[q1,q2,⋯,qn]Q=[q1,q2,⋯,qn]Q=\begin{bmatrix}q_1,q_2,\cdots,q_n\end{bmatrix} Projections–Least Squares Gram-SchmidtdetAdetAdetA Prope...原创 2018-03-18 11:50:59 · 344 阅读 · 0 评论 -
MIT 18.06 linear algebra 第二十六讲笔记
MIT 18.06 linear algebra 第二十六讲笔记第二十六课课程要点:Symmetric MatricesEigenvalue & Eigenvectorstart: Positive Definite Matrix关于对称矩阵A=ATA=ATA=A^T有以下特性:特征值都是实数特征向量都是(可以选取出一组)正交的。如果特征值不同的话...原创 2018-03-19 10:52:38 · 362 阅读 · 0 评论 -
MIT 18.06 linear algebra 第二十讲笔记
MIT 18.06 linear algebra 第二十讲笔记第二十课课程笔记:Formula for A−1A−1A^{-1}Cramers Rule for x=A−1bx=A−1bx=A^{-1}b|Det A| = volume of box二阶矩阵的逆矩阵为:[acbd]−1=1ad−bc[d−c−ba][abcd]−1=1ad−bc[d−b−ca]\begi...原创 2018-03-13 10:19:23 · 435 阅读 · 0 评论 -
MIT 18.06 linear algebra 第二十九讲笔记
MIT 18.06 linear algebra 第二十九讲笔记ATAATAA^TA is Positive Definite !Similar Matrices A,B⇒B=M−1AMA,B⇒B=M−1AMA,B\Rightarrow B=M^{-1}AMJORDAN DORM正定矩阵意味着xTAx>0xTAx>0x^TAx>0,(除x=0x=0x=0)。 ...原创 2018-03-22 18:24:16 · 309 阅读 · 0 评论 -
MIT linear algebra 18.06 第十四课笔记
MIT linear algebra 18.06 第十四课笔记第十四课重点:orthogonal vector & subspacenullspace & rowspaceN(ATA)=N(A)N(ATA)=N(A)N(A^{T}A)=N(A)在前面的课程中我们知道:一个矩阵AAA的行空间垂直于它的零空间。列空间垂直于ATATA^T的零空间。回想...原创 2018-03-06 13:43:56 · 340 阅读 · 0 评论 -
MIT 18.06 linear algebra 第三十讲笔记
MIT 18.06 linear algebra 第三十讲笔记Singular value Decomposition ⇒SVD⇒SVD\Rightarrow SVDA=UΣVTA=UΣVTA=U\Sigma V^T ΣΣ\Sigma is diagonal U,V is Orthogonal对称的正定矩阵AAA,可以被写为A=QSQTA=QSQTA=QSQ^{T}。正定矩阵...原创 2018-03-23 16:00:55 · 543 阅读 · 0 评论 -
MIT 18.06 linear algebra 第二十七讲笔记
MIT 18.06 linear algebra 第二十七讲笔记Complex inner productsVectorMatricesDiscrete FourierFourier Matrix FnFnF_nFast Transform =FFTFFTFFT一个普通的nnn阶矩阵和一个向量做乘法时需要进行n2n2n^2次乘法运算。而进行快速傅里叶变换后可以降低到n...原创 2018-03-20 11:04:07 · 316 阅读 · 0 评论 -
MIT 18.06 linear algebra 第二十一讲笔记
MIT 18.06 linear algebra 第二十一讲笔记第二十一课课程要点Eigenvalue、Eigenvectordet[A−λI]=0det[A−λI]=0det[A-\lambda I]=0TRACE=λ1+λ2+λ3+⋯+λnTRACE=λ1+λ2+λ3+⋯+λnTRACE=\lambda_{1}+\lambda_{2}+\lambda_{3}+\cdots+\...原创 2018-03-14 10:59:25 · 365 阅读 · 0 评论 -
MIT 18.06 linear algebra 第三十一讲笔记
MIT 18.06 linear algebra 第三十一讲笔记第三十课课程要点:Linear TransformationsWithout coordinates: NO MatrixWith Coordinates →→\rightarrow Matrix例子一个二维平面中的投影:使得平面中的一个向量变为平面内的另一个向量 满足以下条件的就是线性变换:T...原创 2018-03-25 11:32:57 · 286 阅读 · 0 评论 -
MIT 18.06 linear algebra 第三十二讲笔记
MIT 18.06 linear algebra 第三十二讲笔记Change of basisCompression of ImagesTransformation↔↔\leftrightarrowMatrix这一课主要是讲了一些关于信号图像压缩的知识。假设现在有一幅图是512×512512×512512\times 512个像素的灰度图。这幅图可以表示为5212×15...原创 2018-03-25 12:21:12 · 326 阅读 · 0 评论 -
MIT 18.06 linear algebra 第二十八讲笔记
MIT 18.06 linear algebra 第二十八讲笔记Positive Definite MatrixTests for Minimum (xTAx>0xTAx>0x^TAx>0)Ellipsoids in RnRnR^n假设正定矩阵A=[abbc]A=[abbc]A=\begin{bmatrix}a&b\\b&c\end{bmatrix},那么它满足...原创 2018-03-21 13:20:33 · 352 阅读 · 0 评论 -
MIT 18.06 linear algebra 第三十三讲笔记
MIT 18.06 linear algebra 第三十三讲笔记第三十三讲主要是对前面学习过的知识的一个复习。6.1-2 特征值与特征向量6.3 dudt=Aududt=Au\frac{du}{dt}=Au and eAteAte^{At}6.4 A=AT⇒A=QΛQTA=AT⇒A=QΛQTA=A^T\Rightarrow A=Q\Lambda Q^T6.5 Positive ...原创 2018-03-26 12:24:29 · 502 阅读 · 0 评论 -
MIT 18.06 linear algebra 第三十四讲笔记
MIT 18.06 linear algebra 第三十四讲笔记第三十四课课程要点:4 subspacesleft-inverseright-inversepseudo-inverse这张图是最前面学到的关于矩阵四个子空间。有m×nm×nm\times n的矩阵AAA,如果矩阵AAA的左右逆都存在即A−1A=I=AA−1A−1A=I=AA−1A^{-1}A=I...原创 2018-03-27 15:33:19 · 367 阅读 · 0 评论 -
MIT 18.06 linear algebra 第二十三讲笔记
MIT 18.06 linear algebra 第二十三讲笔记第二十三课课程要点:Differential Equation dudt=AUdudt=AU\frac{du}{dt}=AUExponential eAteAte^{At} of a matrix本节跳跃有点大,其实好些我也没懂,先记录下。常系数线性方程的解是指数形式的例子:{du1dt=−u1+...原创 2018-03-16 12:31:20 · 349 阅读 · 0 评论 -
MIT 18.06 linear algebra 第二十二讲笔记
MIT 18.06 linear algebra 第二十二讲笔记第二十二课课程笔记Diagonaliging a matrix S−1AS=ΛS−1AS=ΛS^{-1}AS=\LambdaPowers of A | equation Uk+1=AUkUk+1=AUkU_{k+1}=AU_k假设AAA有nnn个独立的特征向量,现在我们把它们作为列向量塞进矩阵SSS。AS=A...原创 2018-03-15 16:30:51 · 316 阅读 · 0 评论 -
MIT 18.06 linear algebra 第九课笔记
MIT 18.06 linear algebra 第九课笔记第九课课程要点:linear independentsapnning a spaceBASIC and dimension假设有一个矩阵AA是m×nm\times n大小的,且mnm。那么Ax=0Ax=0有无限多个非零解(non-zero)。因为这个矩阵中对应的线性方程组中存在着自由变量。假设有向量x1,x原创 2018-01-21 11:28:07 · 344 阅读 · 0 评论 -
MIT 18.06 linear algebra 第五课笔记
MIT 18.06 linear algebra 第五课笔记第五课的课程要点如下:PA=LUvector space and subspacepermutation: execute row exchange前面的课程中一直假设在执行矩阵消元的时候不存在换行,其中A=LUA=LU,AA为下三角矩阵对角线为1,UU为上三角矩阵。然而在实际环境中,一般不会这么理想,大多情形原创 2018-01-14 12:50:25 · 363 阅读 · 0 评论 -
MIT 18.06 linear algebra 第十一讲笔记
MIT 18.06 linear algebra 第十一讲笔记第十一课课程要点:Basic of new vector spacesRank one matricessmall world graphs对于形状为3×3" role="presentation" style="position: relative;">3×33×33\times 3对称矩原创 2018-01-29 12:41:20 · 431 阅读 · 0 评论 -
MIT 18.06 linear algebra 第六课笔记
MIT 18.06 linear algebra 第六课笔记第六课要点如下:vector spaces and subspacecolumn space of A : solving Ax=bNullspace of A向量空间要满足对向量加法和向量数乘封闭。即v+wv+w和cvcv均是在这个空间内的(线性运算的结果在这个空间内)。 假设有两个子空间PP和LL,那么P原创 2018-01-16 09:44:15 · 468 阅读 · 0 评论 -
MIT 18.06 linear algebra 第十讲笔记
MIT 18.06 linear algebra 第十讲笔记第十课的重点为:four Fundamental subspace(for matrices AA)四个子空间分别为:列空间C(AC(A(columnspace of AA)零空间N(A)N(A)(Nullspace of AA)行空间(C(AT)(C(A^T)(rowspace)ATA^T的零空间N(原创 2018-01-23 18:40:28 · 390 阅读 · 0 评论 -
MIT 18.06 linear algebra第一课笔记
MIT 18.06 linear algebra第一课笔记第一课的课程主题为: - n linear equation u unknown(n个方程n个未知数的方程组) - Row picture(行图) - Column picture(列图) - Matrix form(矩阵形式)课程开始首先举了一个两个方程两个未知数的方程组: {2x−y=0−x+2y=3(1)\begi原创 2018-01-08 13:01:17 · 787 阅读 · 0 评论 -
MIT 18.06 linear algebra 第七课笔记
MIT 18.06 linear algebra 第七课笔记第七课课程要点如下:computing the nullspace(Ax=0)pivot variable free variablespecial solution当我们对一个线性方程组化简时可能会出现主元为0的情形: A=⎡⎣⎢1232462682810⎤⎦⎥=⎡⎣⎢100200222244⎤⎦⎥=⎡⎣原创 2018-01-17 16:02:09 · 560 阅读 · 0 评论 -
MIT 18.06 linear Algebra笔记第二课
MIT 18.06 linear Algebra笔记第二课第二课的课程要点如下所示:Elimination(消去法)Back-substitution(回代)Elimination Matrices(消去矩阵)Matrix multiplication(矩阵乘法)课上举得第一个例子就是关于3行3列的方程组,如下所示: ⎧⎩⎨x+2y+z=23x+8y+z=124y+z=2(原创 2018-01-09 20:05:43 · 567 阅读 · 0 评论 -
MIT 18.06 linear algebra 第八课笔记
MIT 18.06 linear algebra 第八课笔记complete solution of Ax=brank⎧⎩⎨x1+2x2+2x3+2x4=b12x1+4x2+6x3+8x4=b23x1+6x2+8x3+10x4=b3(1)\begin{cases}x_1+2x_2+2x_3+2x_4=b_1\\2x_1+4x_2+6x_3+8x_4 = b_2\\3x原创 2018-01-18 17:30:14 · 467 阅读 · 0 评论 -
MIT 18.06 linear algebra 第十二课笔记
MIT 18.06 linear algebra 第十二课笔记第十二课课程要点:Graphs&NetworksIncidence MatricesKirchhoff’s laws图就是有节点和边组成的。下面写出课上关于图的关联矩阵(Incidence Matrix): (1)A=[−11000−110−1010ȡ原创 2018-02-02 18:54:58 · 3715 阅读 · 0 评论 -
MIT 18.06 linear algebra 第三课笔记
MIT 18.06 linear algebra 第三课笔记第三课的课程要点如下: - Matrix multiplication - Inverse of A - Gauss-Jordan/find A−1A−1A^{-1} - 矩阵相乘的第一种方法: 假设AB=CAB=CAB=C,其中CCC中的某一个元素cijcijc_{ij}是由矩阵AAA的rowirowirow...原创 2018-01-10 20:06:30 · 551 阅读 · 7 评论 -
MIT 18.06 linear algebra 第十三课笔记
MIT 18.06 linear algebra 第十三课笔记第十三课课程要点:Review for Exam 1本节课主要是复习前面学习过的知识的。一个5×35×35\times 3的矩阵UUU,秩为3。N(U)=⎡⎣⎢000⎤⎦⎥N(U)=[000]N(U)=\begin{bmatrix}0\\0\\0\end{bmatrix}。假设UUU为行最简形式,那么B=...原创 2018-02-05 15:45:50 · 416 阅读 · 0 评论 -
MIT 18.06 linear algebra 第十五讲笔记
MIT 18.06 linear algebra 第十五讲笔记第十五课课程要点:ProjectionLeast squareProjection MATRIX如上图所示向量bbb投影到向量aaa上的投影向量为ppp。向量e=b−pe=b−pe=b-p。因为ppp与向量aaa方向一致。因此,向量ppp可以用向量aaa来表示,即p=xap=xap=xa。综合前面所述aT...原创 2018-03-07 21:44:04 · 317 阅读 · 0 评论 -
MIT 18.06 linear algebra 第十六讲笔记
MIT 18.06 linear algebra 第十六讲笔记第十六课课程要点:ProjectionsLeast squares and best straight lineProject MatrixP=A(ATA)−1ATP=A(ATA)−1ATP=A(A^TA)^{-1}A^{T}如果向量bbb在某个矩阵的列空间中,那么Pb=bPb=bPb=b。因为bbb在矩阵...原创 2018-03-08 10:26:43 · 268 阅读 · 0 评论 -
MIT 18.06 linear algebra 第十七讲笔记
MIT 18.06 linear algebra 第十七讲笔记第十七课课程要点:Orthogonal basis q1,q2....q3q1,q2....q3q_1,q_2....q_3Orthogonal matrix QQQGram-Schmidt A→QA→QA\rightarrow QOrthogonal normal vector标准正交向量q1,q2,.....原创 2018-03-09 11:08:58 · 692 阅读 · 0 评论 -
MIT 18.06 linear algebra 第三十五讲笔记
MIT 18.06 linear algebra 第三十五讲笔记第三十五讲是MIT 18.06 linear algebra的最后一讲,主要是对前面的知识的一个复习。例题: 给出一个m×nm×nm\times n矩阵AAA,满足Ax=⎡⎣⎢100⎤⎦⎥Ax=[100]Ax=\begin{bmatrix}1\\0\\0\end{bmatrix}没有解,Ax=⎡⎣⎢010⎤⎦⎥Ax=...原创 2018-03-28 12:23:12 · 257 阅读 · 0 评论