MIT 18.06 linear algebra 第二十九讲笔记

本文探讨了正定矩阵的概念及其性质,包括其在最小二乘问题中的应用,以及正定矩阵与其逆矩阵、和的关系。同时介绍了矩阵相似性的概念,并深入讲解了Jordan标准型,包括Jordan块的定义及如何通过Jordan形式理解任意方阵。
摘要由CSDN通过智能技术生成

MIT 18.06 linear algebra 第二十九讲笔记


  • ATA A T A is Positive Definite !
  • Similar Matrices A,BB=M1AM A , B ⇒ B = M − 1 A M
  • JORDAN DORM

正定矩阵意味着 xTAx>0 x T A x > 0 ,(除 x=0 x = 0 )。
前面一直讲正定矩阵,并未说明正定矩阵来源于哪个问题,正定矩阵来自于最小二乘问题。


正定矩阵的逆矩阵,也是正定的。,因为逆矩阵的特征值等于原矩阵特征值的倒数,那么逆矩阵的特征值也都大于零,那么逆矩阵是正定的。

如果 A,B A , B 都是正定的,那么 A+B A + B 也是正定的。 xT(A+B)x=xTAx+xTBx>0 x T ( A + B ) x = x T A x + x T B x > 0 ,得证。

现在有一个矩阵 A A m×n的,那么 ATA A T A 是方阵且为对称阵, xTATAx=(Ax)TAx=|||Ax||20 x T A T A x = ( A x ) T A x = | | | A x | | 2 ≥ 0 ,如果要让 A A 的零空间只有零向量,那么矩阵的秩必须等于n,那么根据前面的知识知道 AA A A 是正定矩阵。

根据前面的知识知道 ATA A T A 可逆,最小二乘才会有最优解。还有就是 ATA A T A 为正定矩阵。

正定矩阵再消元的时候不需要换行。


现在有矩阵 A A B相似。( A,B A , B 并不要是对称阵),这意味着能找到 M M 使得B=M1AM
前面有 S1AS=Λ S − 1 A S = Λ ,那么 A A B相似。

相似矩阵有相同的特征值(而且线性无关的特征向量的数目也要一样多)。

Ax=λx A x = λ x , B=M1AM B = M − 1 A M ,那么证明相似矩阵有相同特征值过程如下。
AMM1x=λx A M M − 1 x = λ x

M1AMM1x=λM1x M − 1 A M M − 1 x = λ M − 1 x

BM1x=λM1x B M − 1 x = λ M − 1 x ,得证。即如果矩阵 A A 有一个特征值λ,那么矩阵 B B 也相应有一个。

假设矩阵的特征向量为x,那么矩阵 B B 的特征值为M1x


下面为Bad case,即当 λ1=λ2 λ 1 = λ 2 时,矩阵有可能无法被对角化。

矩阵 [4004] [ 4 0 0 4 ] ,这个矩阵之和它自己相似。因为 M1[4004]M=4I M − 1 [ 4 0 0 4 ] M = 4 I

矩阵 [4014] [ 4 1 0 4 ] ,它有一个大的家族和它相似,(注意:这个矩阵是无法对角化的,因为如果它可以被对角化,那么它就相似与 [4004] [ 4 0 0 4 ] )。

像这样的矩阵 [4014] [ 4 1 0 4 ] ,被称之为Jordan form

0000100001000000 [ 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ] ,这个矩阵的特征为4个0,有两个特征向量。

0000100000000010 [ 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ] ,特征值为4个0,有两个特征向量,但是这两个矩阵是不相似。上面矩阵中用不同颜色标出的块,叫做Jordan block

Ji J i 表示 i i 阶的jordan block,它只有一个重复的特征值λi,对角线全是 λi λ i ,下方全是0,上面为1。只有一个特征向量。形如: Ji=λi1λi1λi1λi J i = [ λ i 1 λ i 1 λ i 1 ⋱ λ i ]

每一个方阵 A A 相似与某一个Jordan Matrix J=[J1J2Jd]。其中block的数目等于特征向量的数目#block=# eignevector

假设矩阵 A A n个不同的特征值,那么它是一个可以对角化的矩阵,它所对应的Jordan 矩阵就是对角阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值