MIT 18.06 linear algebra 第二十九讲笔记
- ATA A T A is Positive Definite !
- Similar Matrices A,B⇒B=M−1AM A , B ⇒ B = M − 1 A M
- JORDAN DORM
正定矩阵意味着
xTAx>0
x
T
A
x
>
0
,(除
x=0
x
=
0
)。
前面一直讲正定矩阵,并未说明正定矩阵来源于哪个问题,正定矩阵来自于最小二乘问题。
正定矩阵的逆矩阵,也是正定的。,因为逆矩阵的特征值等于原矩阵特征值的倒数,那么逆矩阵的特征值也都大于零,那么逆矩阵是正定的。
如果 A,B A , B 都是正定的,那么 A+B A + B 也是正定的。 xT(A+B)x=xTAx+xTBx>0 x T ( A + B ) x = x T A x + x T B x > 0 ,得证。
现在有一个矩阵 A A 是的,那么 ATA A T A 是方阵且为对称阵, xTATAx=(Ax)TAx=|||Ax||2≥0 x T A T A x = ( A x ) T A x = | | | A x | | 2 ≥ 0 ,如果要让 A A 的零空间只有零向量,那么矩阵的秩必须等于,那么根据前面的知识知道 AA A A 是正定矩阵。
根据前面的知识知道 ATA A T A 可逆,最小二乘才会有最优解。还有就是 ATA A T A 为正定矩阵。
正定矩阵再消元的时候不需要换行。
现在有矩阵
A
A
和相似。(
A,B
A
,
B
并不要是对称阵),这意味着能找到
M
M
使得。
前面有
S−1AS=Λ
S
−
1
A
S
=
Λ
,那么
A
A
和相似。
相似矩阵有相同的特征值(而且线性无关的特征向量的数目也要一样多)。
Ax=λx
A
x
=
λ
x
,
B=M−1AM
B
=
M
−
1
A
M
,那么证明相似矩阵有相同特征值过程如下。
AMM−1x=λx
A
M
M
−
1
x
=
λ
x
M−1AMM−1x=λM−1x M − 1 A M M − 1 x = λ M − 1 x
BM−1x=λM−1x B M − 1 x = λ M − 1 x ,得证。即如果矩阵 A A 有一个特征值,那么矩阵 B B 也相应有一个。
假设矩阵的特征向量为,那么矩阵 B B 的特征值为
下面为Bad case,即当 λ1=λ2 λ 1 = λ 2 时,矩阵有可能无法被对角化。
矩阵 [4004] [ 4 0 0 4 ] ,这个矩阵之和它自己相似。因为 M−1[4004]M=4I M − 1 [ 4 0 0 4 ] M = 4 I 。
矩阵 [4014] [ 4 1 0 4 ] ,它有一个大的家族和它相似,(注意:这个矩阵是无法对角化的,因为如果它可以被对角化,那么它就相似与 [4004] [ 4 0 0 4 ] )。
像这样的矩阵 [4014] [ 4 1 0 4 ] ,被称之为Jordan form。
⎡⎣⎢⎢⎢0000100001000000⎤⎦⎥⎥⎥ [ 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ] ,这个矩阵的特征为4个0,有两个特征向量。
⎡⎣⎢⎢⎢0000100000000010⎤⎦⎥⎥⎥ [ 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ] ,特征值为4个0,有两个特征向量,但是这两个矩阵是不相似。上面矩阵中用不同颜色标出的块,叫做Jordan block。
Ji J i 表示 i i 阶的jordan block,它只有一个重复的特征值,对角线全是 λi λ i ,下方全是0,上面为1。只有一个特征向量。形如: Ji=⎡⎣⎢⎢⎢⎢⎢⎢⎢λi1λi1λi1⋱λi⎤⎦⎥⎥⎥⎥⎥⎥⎥ J i = [ λ i 1 λ i 1 λ i 1 ⋱ λ i ] 。
每一个方阵 A A 相似与某一个Jordan Matrix J=。其中block的数目等于特征向量的数目#block=# eignevector。
假设矩阵 A A 有个不同的特征值,那么它是一个可以对角化的矩阵,它所对应的Jordan 矩阵就是对角阵。