MIT 18.06 linear algebra 第十七讲笔记

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Light_blue_love/article/details/79493650

MIT 18.06 linear algebra 第十七讲笔记


第十七课课程要点:

  • Orthogonal basis q1,q2....q3
  • Orthogonal matrix Q
  • Gram-Schmidt AQ
  • Orthogonal normal vector

标准正交向量q1,q2,....qn,{0ifij1ifi=j

一个由标准正交向量组成的矩阵Q,Q=[q1q2qn],那么容易证明QTQ=I

如果Q是方阵,QTQ=I 告诉我们QT=Q1。因为Q为方阵且各列都是正交的,那么意味着Q是可逆的,因此上述结论成立。


假设Q中的各个列都是标准正交的列向量,当有一个向量投影Q的列空间上时,投影矩阵为:P=Q(QTQ)1QT=QQT,如果Q为方阵的话,投影矩阵就是单位阵I。因为Q如果是方阵且各列是标准正交的,那么Q可逆,且Q各列组成的列空间是整个空间,任何一个向量投影到这个空间,都等于向量自身,因此投影矩阵为单位阵。

上面的投影矩阵依旧满足P2=PPT=P

(QQT)(QQT)=Q(QTQ)QT=QIQT=QQT。证明完毕。

在前面的课程中我们求解ATAx^=ATb,现在变为QTQx^=QTb。因而得出x^=ATbxi^=qiTb,这说明了,如果是标准正交基,在第i个基方向上的投影就等于qiTb

现在我们可以发现求解x^变得十分容易。这也为后面将A转化为标准正交矩阵埋下了伏笔。


将向量组标准正交化:

Gram-Schmidt发明了此套理论。

首先我们将向量a,b转化为相互正交的向量A,B,然后再将其标准化。

这里写图片描述

图中先看向量a,b,首先我们需要将其正交化,我们可以选择a的方向不变,a也就变为A。接下来我们需要将向量b正交化,也就是转化为与a垂直的方向。前面我们知道将向量b投影到a上时,bp=e,这个e也就是垂直于a的。b也就转化为BB=bp=bATbATAA。我们可以验证一下,ATB=AT(bATbATAA)=0。再有一个向量c时,正式我们需要将将与A,B正交。C=cATcATAABTcBTBB。这时我们再将A,B,C标准化即可。A||A||,B||B||,C||C||

如果我们仔细思考一下可以发现,Q的列空间和A的列空间是一样的。只是用来表示这个空间的一组基不同而已,一组标准正交,另一组非标准正交而已。

前面的课程中我们通过消元法将矩阵变为上三角矩阵。即A=LU。现在的矩阵Q也是通过变换而来的。A=QR,R=QTA,继而R=[q1Ta1q1Ta2q2Ta1q2Ta2]。(这里假设A=[a1,a2],Q=[q1,q2])因为我们知道q2的正交是以q1为基础的因此q2Ta1=0,因此R为上三角矩阵。虽然这里举的例子AQ中都只有两个向量,有更多向量的情形是类似的,qiTaj只有在j>i的时候为0。

展开阅读全文

没有更多推荐了,返回首页