MIT 18.06 linear algebra 第五课笔记

MIT 18.06 linear algebra 第五课笔记


第五课的课程要点如下:

  • PA=LU
  • vector space and subspace
  • permutation: execute row exchange

前面的课程中一直假设在执行矩阵消元的时候不存在换行,其中 A=LU A 为下三角矩阵对角线为1,U为上三角矩阵。然而在实际环境中,一般不会这么理想,大多情形下是要对被消元矩阵进行行的互换(因为存在主元位置为0的情形,而主元是不能为0,所以要进行行互换)。对于任何可逆的矩阵 A ,满足PA=LU,其中 P 为置换矩阵(permutation matrices)。有时是需要P,有时并不需要 P 。课上对P的定义如下:

P= identify matrix with reorder rows

对于一个 n×n 的矩阵,它的置换阵 p 一种有n!种。其中置换阵有着独特的性质那就是 P1=pT ,也就是说 PTP=I


对于一个矩阵的置换,所做的变换为将矩阵的第一行变成第一列,第二行变成第二列,以此类推。即满足 (AT)ij=Aji 。下面给出一个例子:

124331>[132341](1)

如果一个矩阵转置后与没有转置是一样的,那么称这种矩阵为对称阵。即 AT=A
ATA 永远是一个对称阵,证明如下:
(ATA)T=AT(AT)T=ATA(2)


向量空间必须对数乘和加法两种运算是封闭的(即对于线性运算是封闭的)。切记:所有向量空间必须包含原点。比如直角坐标系中一条穿过原点的直线,在该直线上任意的向量线性运算都是在这条直线上的。所以这条穿过原点的直线是一个向量空间。它也是 R2 的子空间。
对于 R2 二维平面的子空间有:
①整个 R2 平面
②任何穿过(0,0)点的直线。
③原点
对于一个三维空间它的子空间有:
①整个 R3 平面
②任何穿过原点的二维平面
③任何穿过(0,0,0)点的直线。
④原点


对于一个矩阵 A 它的列向量的线性组合组成的向量空间我们称之为列空间,记为C(A)。例如一个矩阵:

A=124331(3)

上式(3)由列向量线性组合构成的向量空间是 R3 的一个子空间,它是三维空间中穿过原点的一个二维平面。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值