MIT 18.06 linear algebra 第九课笔记

MIT 18.06 linear algebra 第九课笔记


第九课课程要点:

  • linear independent
  • sapnning a space
  • BASIC and dimension

假设有一个矩阵 A m×n大小的,且 m<n 。那么 Ax=0 有无限多个非零解(non-zero)。因为这个矩阵中对应的线性方程组中存在着自由变量。

假设有向量 x1,x2,x3....xn 是相互独立的。那么就不存在参数 ci 使得 c1x1+c2x2+....cnxn=0 ,当然这里 ci 是除0以外的。也就是说如果这些向量相互独立,要想使得等于0成立,那么必须要求 ci 等于0。如果存在不全为0的 ci 使得 c1x1+c2x2+....cnxn=0 成立,那么向量 x1,x2,x3....xn 是线性相关的。

需要记住一点的就是零向量与任何向量都是线性相关的,也就是说零向量的方向是任意的。

v1,v2,v3,....vn A 矩阵中的列向量,如果矩阵A的零空间(Nullspace)是零向量,那么这些列向量时独立的。即矩阵 A 的秩等于n。但如果矩阵 A 的零空间不只有零向量的话,那么列向量时线性相关的,即矩阵A的秩是小于 n 的。


由列向量v1,v2,v3,....vt生成一个空间,意味着这个空间中包含着这些列向量的所有可能的线性组合。

一个空间的是一系列具有两大性质的向量组。

  1. 它们是相互独立的。
  2. 它们能够生成这个空间。

Rn n 个向量构成一组基,那么由这n个列向量构成的 n×n 矩阵必定是可逆的。
每个特定空间的基中拥有的向量数目是相同的,它们的数目代表着这个空间的维度
Rank(A)= 主列的数目=矩阵列空间 C(A) 的维度
矩阵 A 零空间N(A)的维度 = 自由变量的数目= nr

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值