MIT 18.06 linear algebra 第十讲笔记

MIT 18.06 linear algebra 第十讲笔记


第十课的重点为:

  • four Fundamental subspace(for matrices A )

四个子空间分别为:

  1. 列空间C(A(columnspace of A
  2. 零空间N(A)(Nullspace of A
  3. 行空间(C(AT)(rowspace)
  4. AT 的零空间 N(AT) (Nullspace of AT )
  5. 前面已经见过列空间和零空间了,行空间就是矩阵中行向量所有的线性组合构成的空间。 AT 的零空间即 ATx=0 的所有解构成的空间。 N(AT) 又称为左零矩阵。


    假设矩阵 A m×n的:

    • N(A) 是在 Rn 中的
    • C(AT) 是在 Rn 中的
    • N(AT) 是在 Rm 中的
    • C(A) 是在 Rm 中的

    这四个子空间,其中 C(A) N(AT) 的维度和为m,其中 C(AT) N(A) 的维度和为n。

    对于列空间 C(A) 的一组基就是矩阵 A 中的主列。C(A) C(AT) 的维度都为矩阵 A 的秩r N(A) 的维度为 nr N(AT) 的维度为 mr

    A=111212323111>100010110100=R(1)

    式(1)中进行的行变换,矩阵 A 的行空间和R的行空间是一样的(因为消元进行的是对行的线性变化,所以并不会改变行空间)。但是矩阵 A 的列空间和R的列空间是不一样的。即 C(A)C(R)

    N(AT) 就是 ATy=0 的所有解构成的空间。可以变换为: yTA=0T 。所以 N(AT) 又称为 A 的左零空间。

    式(1)中对矩阵A进行的变换相当于: EA=R 。那么[ Am×nIm×m ]做相同的变换就成 [Rm×nEm×m]

    EA=111210001111212323111>100010110100=R(2)

    从式(2)中可以看出来, E 的最后一行的转置就是N(AT)的一组基。


    new “vector” space
    对于一个矩阵来说,矩阵之间(同形状)是可以相加的,矩阵也可以数乘。这样就很类似向量空间的概念。
    例如:所有的上三角矩阵构成一个空间,所有的对称阵构成一个空间。上三角矩阵与对称阵的交集构成对角阵的空间。假设对角阵的维度为 3×3 ,那么这个空间的基就是3。基的示例如下:

    100000000000010000000000001(3)

    以上三个矩阵就可以成为3维对角阵的一组基。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值