MIT 18.06 linear algebra 第十一讲笔记

MIT 18.06 linear algebra 第十一讲笔记


第十一课课程要点:

  • Basic of new vector spaces
  • Rank one matrices
  • small world graphs

对于形状为 3×3 3 × 3 对称矩阵组成的空间的维度为多少?
由形状为 3×3 3 × 3 的上三角矩阵组成的空间维度为多少?

如下所示,下面6个矩阵就是 3×3 3 × 3 对称矩阵组成的空间的基,那么其维度也就是6。

100000000000010000000000001010100000001000100000001010(1) (1) [ 1 0 0 0 0 0 0 0 0 ] [ 0 0 0 0 1 0 0 0 0 ] [ 0 0 0 0 0 0 0 0 1 ] [ 0 1 0 1 0 0 0 0 0 ] [ 0 0 1 0 0 0 1 0 0 ] [ 0 0 0 0 0 1 0 1 0 ]

同理,可以得出形状为 3×3 3 × 3 上三角矩阵的维度为6。

下面我们用 S S 代表对称矩阵(Symmetric matrices)空间用U代表上三角矩阵(Upper triangular matrices)组成的空间。那么 SU S ∩ U 的维度为3(因为交集组成的空间等于对角阵组成的空间)。 SU S ∪ U 并不能组成一个空间,因为 S S U的空间维度都是6维的。只是它们的“朝向”不同,因此它们的并集并不能组成空间。 S+U S + U 表示这样的空间。其中一个元素(element)从 U U 中取,另一个元素从S中取,这样构成的空间。这个空间的维度为9。

S+U S + U =any element of S S + any element of U = all 3×3 3 × 3

我们可以发现 SU S ∩ U 的维度加上 S+U S + U 的维度之和等于 S S U的维度之和。因此有如下结论:

两个空间的维度之和等于两个空间交的维度加和的维度


假设有矩阵 A A 如下:

(2)[1452810]=[12][145]

从上式(2)中可以看出所有秩为1的矩阵都可以写为一列乘以一行的形式。即 A=UVT A = U V T ,如果一个形状为 5×17 5 × 17 的矩阵,假设它的秩为4,那么我们可以通过4个秩为1的矩阵搭建出这个矩阵来。

所有形状为 5×17 5 × 17 且秩为4的矩阵能构成一个空间吗?答案是不能。因为两个同形状秩为4的矩阵有可能相加构成秩为5的矩阵。就不在这个空间之内了。


R4 R 4 中所有满足 v=v1v2v3v4 v = [ v 1 v 2 v 3 v 4 ] 其四个分量之和为0构成一个集合,请问这个集合对应的空间的维度是多少?这个问题等价于求下式的零空间:

Av=[1111]v1v2v3v4 =0(3) (3) A v = [ 1 1 1 1 ] [ v 1 v 2 v 3 v 4   ] = 0

由于矩阵 A A 的秩为1,那么有dim(N(A))=nr得出维度为3。这个空间的一组基如下所示:
100111001010(4) (4) [ − 1 0 0 1 ] [ − 1 1 0 0 ] [ − 1 0 1 0 ]

矩阵 A A 的列空间的维度为1。N(AT)=0也就是说 AT A T 的基是空集,维度为0。

以上用到了我们以前总结的一条规律:

  • N(A)+row(A)=n N ( A ) + r o w ( A ) = n
  • col(A)+N(AT)=m c o l ( A ) + N ( A T ) = m

图:图是由一些点和线构成的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值