母婴商品销量分析(附Python源码及Tableau文件)
为减少篇幅,本文将尽量少的配上源码,在文件中已经有详细注释。
本案例结合Python和Tableau,由于数据量及维度较少,所以更多的是使用Tableau进行可视化处理。
项目介绍
项目背景
根据PEST框架,从四个角度简要分析:
- 政策Politics:国家发展改革委2013年5月28日表示,13个部门将出台系列政策措施,从可信交易、移动支付、网络电子发票、商贸流通和物流配送共5个方面支持电子商务发展,有利于促进在线母婴商品市场快速发展。
- 经济Economy:随着国内经济的稳定增长,2015年我国城镇居民可支配收入增长到31195元, 同期农村居民可支配收入增长到11422元。不断提高的人均可支配收入将提升家庭的消费意愿,2015年中国母婴行业市场规模有望达到2万亿。
- 社会Society:对于一线城市居民来说,随时随地通过手机、电脑等电子网络设备足不出门即可完成购物的新型消费方式更能适应他们紧凑的生活节奏;而对于二三线城市以及农村居民,物流上门配送带来的便捷也使得网购更具吸引力。
- 技术Technology:4G网络的普及、手机和ipad等移动设备快速升级迭代更新、网络在线支付系统的发展,为电子商务迅速崛起注入强大的动力。
分析目的
- 帮助在线商家针对不同的时间节点和场景做出不同的销售和运营管理策略,帮助商家提高销量和营业额、减少经营成本。
- 根据孩子的信息(年龄、性别等)来预测用户会购买什么样的商品。(暂未完成)
问题拆解
数据概览
Ali_Mum_Baby是一个包含超过900万儿童信息(生日和性别)的数据集,由消费者提供,他们共享这些信息是为了获得更好的推荐或搜索结果。
本次数据共有两个csv。
婴儿信息表
Column | Description |
---|---|
user_id | user id |
birthday | children’s birthday |
gender | 0-female,1-male,2-unknown |
交易记录表
Column | Description |
---|---|
item_id | item id |
user_id | user id |
cat_id | category id |
cat1 | root category id |
propery | property of the corresponding item |
buy_mount | purchase quantity |
day | timestamp |