机器学习知识总结:代价函数与经验风险、结构风险最小化

本文总结了机器学习中代价函数的概念,包括0-1损失、平方损失、绝对损失和对数损失,并探讨了经验风险最小化与结构风险最小化的区别。经验风险在大量样本下有效,但小样本时可能导致过拟合;结构风险最小化通过正则化防止过拟合,寻求经验风险和模型复杂度的平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、代价函数

代价函数(cost function)用来度量预测错误,损失函数越小模型越好,常见的有4种:

  1. 0-1损失函数:
    这里写图片描述

  2. 平方损失函数:
    这里写图片描述

  3. 绝对损失函数:
    这里写图片描述

  4. 对数损失函数:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值