二阶系统在我们日常生活中无处不在。
牛顿第二定律:F=ma a:加速度,即 <位移对时间的二次导数> 可以是 也可以是
注:一点:对时间的导数,两点:对时间的二阶导数
动力学和运动学都建立在牛二定律上,所以我们周围的运动现象普遍都是二阶的
从振动理论入手,分析二阶系统。
例:一个质量弹簧阻尼系统,受到外力F,向右定义为正方向。
去建立系统的动态方程,需要分析质量块的受力
阻尼力B与(即速度)成正比 比如划水,速度越大受到阻尼力越大
由牛二定律得整理得
条件:
定义两个参数:
这次,我们研究系统对(Response to Initial Condition)初始条件的反应
初始条件:
现在把条件代入整理后的式子中,得
分析它的动态响应,即 求解微分方程
式子转化为
相当于初始时,把质量块置于x=5的位置,速度为0,在这种情况下释放。
matlab/similink中:
对于微分方程来说,它的解的形式:所以,
代入,得
即
因为所以👈称作 特征方程
求解特征方程,利用求根公式
分情况讨论:
将similink中的zeta改为2,看看
将similink中的zeta改为1,看看,收敛较快,不慢。
此处x(t)有误,
将similink中的zeta改为0.2,看看,不断震动,不断衰减将similink中的zeta改为0,看看
5、6自行仿真尝试。