【动态系统的建模与分析】二阶系统对初始条件的动态响应-笔记

本文深入探讨了二阶系统在日常生活中的应用,以质量弹簧阻尼系统为例,通过牛顿第二定律建立动态方程。分析了阻尼力的影响,并引入了自然频率ωn和阻尼比ζ两个关键参数。通过MATLAB/Simulink进行仿真,展示了不同阻尼比下系统的动态响应,包括自由振动、衰减振动和无阻尼振动等情形。
摘要由CSDN通过智能技术生成

二阶系统在我们日常生活中无处不在。

牛顿第二定律:F=ma     a:加速度,即 \frac{d^{2}x}{dt^{2}}<位移对时间的二次导数>     可以是   \ddot{x}  也可以是 \ddot{\theta }

一点:对时间的导数,两点:对时间的二阶导数

动力学和运动学都建立在牛二定律上,所以我们周围的运动现象普遍都是二阶的


 从振动理论入手,分析二阶系统。

:一个质量弹簧阻尼系统,受到外力F,向右定义为正方向。

去建立系统的动态方程,需要分析质量块的受力

阻尼力B与\dot{x}(即速度)成正比       比如划水,速度越大受到阻尼力越大

由牛二定律得整理得


条件

定义两个参数:

这次,我们研究系统对(Response to Initial Condition)初始条件的反应

初始条件: 


 现在把条件代入整理后的式子中,得

分析它的动态响应,即 求解微分方程

式子转化为

相当于初始时,把质量块置于x=5的位置,速度为0,在这种情况下释放。

matlab/similink中:

 

 对于微分方程来说,它的解的形式:所以,

代入,得

 即

因为所以👈称作 特征方程

求解特征方程,利用求根公式

分情况讨论:

将similink中的zeta改为2,看看

将similink中的zeta改为1,看看,收敛较快,不慢。

此处x(t)有误,

将similink中的zeta改为0.2,看看,不断震动,不断衰减将similink中的zeta改为0,看看

 5、6自行仿真尝试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值