拉普拉斯变换的定义-笔记

引入   傅里叶变换——需要满足的条件:

          1.迪利克雷Dirichlet条件 

           2.绝对可积   

           3.f(t)在(-∞,+∞)有意义   

实际问题中,对于2,u(t)[单位阶跃函数],sinwt,coswt不是绝对可积的;对于3,往往在t<0时无意义或不需要考虑。

因此,要使f(t)绝对可积,它就要呈现一种衰减式的变化——利用指数衰减函数达到这种变化

          g(t)={0, t<0                           f(t)·g(t)  当β取合适值时,绝对可积。

                  {e^(-βt) t≥0

         有意义——单位阶跃函数

         u(t)={1,t>0                            f(t)·u(t)={f(t),t>0         

                 {0, t<0                                           {0, t<0   

从而,f(t)·e^(-βt)·u(t)的傅里叶变换存在,

         

令β+jw=s,

           即拉普拉斯变换(Laplace-变换)

1.定义

设f(t)在t≥0时有定义,且(s=β+jw),在复平面s的某个邻域内收敛,则称其为f(t)的拉普拉斯变换,记作F(s)=L[f(t)]=,称F(s)是f(t)的象函数,而f(t)为象原函数。

注:L[f(t)]=F[]     s=β+jw

2.存在条件

若f(t)满足下列条件:①在t≥0的任一有限区间上连续或分段连续

                                 ②t→+∞时,f(t)增长速度不超过某一指数函数,即\existsM>0,c≥0,使                                     (0≤t<+∞)

则f(t)的拉普拉斯变换L[f(t)]=F(s)=在Re(s)>c上一定存在;右端积分在Re(s)≥c1>c上绝对收敛且一致收敛,并且在Re(s)>c的半平面内F(s)为解析函数。

必记:L[u(t)] = L[1] =  \frac{1}{s}     (Re(s)>0)

          L[e^{kt}]  =  \frac{1}{s-k}     (Re(s)>k)

          L[sinkt]  =  \frac{k}{s^{2}+k^{2}}         (Re(s)>0)

          L[coskt]  =  \frac{s}{s^{2}+k^{2}}         (Re(s)>0)

          L[t^{m}]   =   \frac{m!}{s^{m+1}}      (Re(s)>0)

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值