【动态系统的建模与分析】一阶系统的单位阶跃响应+时间常数-笔记

本文介绍了如何通过steptest分析一阶系统的特性,重点关注系统稳定时间和时间常数。内容涉及传递函数、单位阶跃响应、Laplace变换以及系统响应图像。通过实例解释了一阶系统如何作为低通滤波器,过滤高频信号。同时强调了系统容量在应对快速变化事件中的作用。此外,还讨论了系统识别的方法,如计算稳定时间和时间常数的公式,并给出了不同条件下的系统响应图像。
摘要由CSDN通过智能技术生成

一个一阶系统:

其数学表达:

做系统识别:

令qin = c,去记录高度的变化,可得图像

 这个系统的响应为

 如果其4s达到稳定时间,则

(该系统传递函数为,则

所以  \frac{R}{g}=1

又 图像上它最后稳定在数值5,则 \frac{cR}{g}=5

所以c = 5    ——系统识别的结果

这种测试方法成为step test,用于分析系统特性。


 

 左边是输入,右边是输出。 只反应了低频率的变化,而不表现出高频率变化。

对于上述流体系统而言,容器部分起到了抵抗高速变化的作用,因为它有积累。

所以可以说,有积累的变化就是低通滤波器,对高速的变化不敏感。

比如最典型的一个积累——积分,

在图上可以看到,高频的部分 cos100x  被过滤掉了,实际上,被缩小了100倍。


🧡老师说,大家平时要多多积累,有了容量之后,才能在面对高速变化的事件做到处乱不惊!!!


 一阶系统(一般形式),传递函数可以表达为:

单位阶跃(Unit Step)

 图像

其Laplace变化为:

 则,令u(s)= \frac{1}{s},则

 对x(s)进行laplace逆变换,得到x(t)的时间函数

时间常数 time constant (系统特性)——可用于做系统识别

 这里标红字母为时间常数。

稳定(整定)时间 setting time


 换个角度分析单位阶跃响应

 一阶线性时不变系统:

为了简化,令

 在自控领域中,可以用传递函数分析该系统。👇

作Laplace ————则传递函数为

 

系统的输入u为单位阶跃函数,

 则,(以上为s域中的分析)

在时域中,

 

 另一角度

 (只考虑时间大于0时的问题)

x导数的图像:

x的初始值x(0) =  0 /  其他值

a>0  /   a<0

x的图像为:

 以上方法为 Phase-Portrai

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值