【动态系统的建模与分析】一阶系统的单位阶跃响应+时间常数-笔记

本文介绍了如何通过steptest分析一阶系统的特性,重点关注系统稳定时间和时间常数。内容涉及传递函数、单位阶跃响应、Laplace变换以及系统响应图像。通过实例解释了一阶系统如何作为低通滤波器,过滤高频信号。同时强调了系统容量在应对快速变化事件中的作用。此外,还讨论了系统识别的方法,如计算稳定时间和时间常数的公式,并给出了不同条件下的系统响应图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个一阶系统:

其数学表达:

做系统识别:

令qin = c,去记录高度的变化,可得图像

 这个系统的响应为

 如果其4s达到稳定时间,则

(该系统传递函数为,则

所以  \frac{R}{g}=1

又 图像上它最后稳定在数值5,则 \frac{cR}{g}=5

所以c = 5    ——系统识别的结果

这种测试方法成为step test,用于分析系统特性。


 

 左边是输入,右边是输出。 只反应了低频率的变化,而不表现出高频率变化。

对于上述流体系统而言,容器部分起到了抵抗高速变化的作用,因为它有积累。

所以可以说,有积累的变化就是低通滤波器,对高速的变化不敏感。

比如最典型的一个积累——积分,

在图上可以看到,高频的部分 cos100x  被过滤掉了,实际上,被缩小了100倍。


🧡老师说,大家平时要多多积累,有了容量之后,才能在面对高速变化的事件做到处乱不惊!!!


 一阶系统(一般形式),传递函数可以表达为:

单位阶跃(Unit Step)

 图像

其Laplace变化为:

 则,令u(s)= \frac{1}{s},则

 对x(s)进行laplace逆变换,得到x(t)的时间函数

时间常数 time constant (系统特性)——可用于做系统识别

 这里标红字母为时间常数。

稳定(整定)时间 setting time


 换个角度分析单位阶跃响应

 一阶线性时不变系统:

为了简化,令

 在自控领域中,可以用传递函数分析该系统。👇

作Laplace ————则传递函数为

 

系统的输入u为单位阶跃函数,

 则,(以上为s域中的分析)

在时域中,

 

 另一角度

 (只考虑时间大于0时的问题)

x导数的图像:

x的初始值x(0) =  0 /  其他值

a>0  /   a<0

x的图像为:

 以上方法为 Phase-Portrai

### 测量一阶系统阶跃响应时间常数的方法 对于一阶线性系统,在受到单位阶跃输入时,系统的输出会随着时间逐渐接近最终稳定状态。该过程可以用指数函数来描述,其表达式为: \[ y(t) = 1 - e^{-\frac{t}{T}} \] 这里 \( T \) 表示时间常数,它反映了系统达到新稳态所需的时间长短[^1]。 为了测量实际物理系统中的这个参数,可以通过实验手段获取系统的阶跃响应曲线,并利用特定的比例点来进行估算。具体操作如下所示: 当给定一个理想的阶跃激励后,记录下输出首次上升到最大变化幅度63.2%所需要的时间间隔,此时间段正好对应于理论上的单个时间常数值\( T \)[^2]。 ```python import numpy as np from scipy.optimize import curve_fit def first_order_response(t, tau): """定义一阶系统的阶跃响应""" return 1 - np.exp(-t / tau) # 假设已知一组时间和对应的输出数据 points_t 和 points_y points_t = [...] # 时间序列 points_y = [...] # 输出值序列 popt, pcov = curve_fit(first_order_response, points_t, points_y) time_constant = popt[0] print(f"The estimated time constant is {time_constant:.4f} seconds.") ``` 上述Python代码片段展示了如何基于最小二乘拟合技术估计出最佳匹配的一阶系统模型及其相应的时间常数。这种方法不仅适用于实验室环境下的精确测试,也适合处理含有噪声的真实世界场景中采集的数据集[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值