ncnn上部署yolov5

1、准备工作

  • U神的yolov5源码,下载地址
  • 自己的模型或者yolov5官网发布模型
  • linux系统(本在ubuntu18的docker环境下部署 )
  • ncnn源码,下载地址
  • opencv
  • protobuf 

  • opencv和protobuf必须安装否则在编译ncnn的时候,由于检测不到protobuf和opencv,onnx2ncnn工具不会被编译。

2、.pt文件转.onnx文件

将yolov5从torch框架转到ncnn上前需要用onnx工具先将.pt模型文件转化为.onnx文件,这里主要有两个中的步骤

1、python models/export.py --weights yolov5s.pt --img 640 --batch 1    #将.pt文件用onnx转化为.onnx文件
2、python -m onnxsim yolov5s.onnx yolov5s-sim.onnx   #onnxsim 精简模型

 

3、编译ncnn

1)、安装opencv

sudo apt install libopencv-dev

2)、编译protobuf-2.6.1

下载

wget https://github.com/google/protobuf/releases/download/v2.6.1/protobuf-2.6.1.tar.gz

解压后编译

cd protobuf-2.6.1
./configure
make -j
make check
sudo make install
sudo ldconfig

3)、编译ncnn

git clone https://github.com/Tencent/ncnn.git
cd ncnn
mkdir build && cd build
cmake ..
make
make install

4、onnx2ncnn(有坑)

步骤一   

cd ncnn/build/tools/onnx/

步骤二

./onnx2ncnn yolov5s-sim.onnx yolov5s.param yolov5s.bin #这里yolov5s-sim.onnx为“.pt文件转.onnx文件”生成的文件,输出yolov5s.param yolov5s.bin

这里会出现以下问题,这是由于ncnn不支持focus,这是focus模块转换的报错,我们需要手动修改生成的.param文件的参数。

可以用vim或者其他文本编辑器打开.param文件,该文件主要修改两个大的地方,如图所示:

第一处,修改不支持的层

第一处修改后:

这里主要是删除了不支持的层,并在ncnn中实现focus,删除10层 添加一层 减少了9层
添加的一层的输出可以根据下一层的输入填写,图中已标红,这里176的计算方法为原始层数185-10+1(添加的Yolov5Focus层),167是下一个卷积层的输入。

第二处 修改网络输出的shape,例如原图:

第二处修改后:

这里输出全部改为-1(修改位置为绿色框选的部分),否则回归会出来一堆bounding box,同时记住红色框出的字段,该字段为网络输出的name,在预测代码中,会根据该字段去结果,所以不同的网络需要修改此处。

5、修改yolov5的example代码,这里主要修改网络的输入和输出,输入为模型训练时image 的size,输出层name为第四步中红色框出的字段。

vim example/yolov5.cpp

6、重新编译example,在build/example目录下会生成yolov5的可执行文件,此时就可以测试了。

 

要在ncnn部署yolov5,需要进行以下步骤: 1. 下载ncnn的源代码,并编译安装。 2. 下载yolov5的代码和预训练模型。 3. 将yolov5的模型转换成ncnn的模型格式。可以使用ncnn自带的工具ncnn转换器,或者使用yolov5官方提供的转换工具。 4. 编写C++代码,加载ncnn模型,读取图像并进行目标检测,最后输出检测结果。 下面是一个简单的C++代码示例: ```c++ #include <iostream> #include <net.h> #include <opencv2/opencv.hpp> using namespace std; using namespace ncnn; int main() { // 加载ncnn模型 Net yolov5; yolov5.load_param("yolov5.param"); yolov5.load_model("yolov5.bin"); // 读取图像 cv::Mat image = cv::imread("test.jpg"); // 图像预处理 const int target_size = 640; const float mean_vals[3] = {0.0f, 0.0f, 0.0f}; const float norm_vals[3] = {1/255.f, 1/255.f, 1/255.f}; ncnn::Mat in = ncnn::Mat::from_pixels_resize(image.data, ncnn::Mat::PIXEL_BGR2RGB, image.cols, image.rows, target_size, target_size); in.substract_mean_normalize(mean_vals, norm_vals); // 执行目标检测 Mat out; yolov5.forward(in, out); // 解析检测结果 const float* detection = out.row(0); for (int i = 0; i < out.h; i++) { float label = detection[0]; float score = detection[1]; float x1 = detection[2]; float y1 = detection[3]; float x2 = detection[4]; float y2 = detection[5]; if (score > 0.5) { cout << "label: " << label << ", score: " << score << ", box: (" << x1 << ", " << y1 << ", " << x2 << ", " << y2 << ")" << endl; } detection += 6; } return 0; } ``` 请注意,这只是一个简单的示例代码,具体的实现可能需要根据具体情况进行修改和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值