pytorch训练和测试CNN

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch训练CNN-GRU模型,可以使用nn.Module类来构建模型。下面是一个简单的示例代码,其中包含一个CNN层和一个GRU层: ```python import torch import torch.nn as nn class CNN_GRU_Model(nn.Module): def __init__(self): super(CNN_GRU_Model, self).__init__() # CNN layer self.cnn = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3), nn.ReLU(), nn.MaxPool2d(kernel_size=2), nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) # GRU layer self.gru = nn.GRU(input_size=32*6*6, hidden_size=64, num_layers=1, batch_first=True) # Output layer self.out = nn.Linear(64, 10) def forward(self, x): x = self.cnn(x) x = x.view(x.size(0), -1) x, _ = self.gru(x) x = self.out(x[:, -1, :]) return x ``` 在上述代码中,我们首先定义了一个`CNN_GRU_Model`类,继承自`nn.Module`类。该类包含三个层,分别是CNN层、GRU层和输出层。 在`__init__`函数中,我们定义了CNN层和GRU层。CNN层包含两个卷积层和两个池化层。GRU层包含一个单层的GRU网络,其中输入大小为32\*6\*6,隐藏层大小为64。输出层使用一个线性层,将GRU层的输出映射到10个类别上。 在`forward`函数中,我们首先将输入通过CNN层进行卷积和池化,然后将输出展平成二维张量。接着,我们将展平后的张量输入到GRU层中,得到GRU层的输出。最后,我们将GRU层的最后一个时间步的隐藏状态输入到输出层中,得到最终的分类结果。 接下来,我们可以使用上述模型来训练一个分类任务的数据集。假设我们使用的是CIFAR-10数据集,可以使用以下代码进行训练: ```python import torchvision.datasets as datasets import torchvision.transforms as transforms # Load CIFAR-10 dataset train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor()) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor()) # Define dataloader train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) # Define model model = CNN_GRU_Model() # Define loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # Train the model num_epochs = 10 for epoch in range(num_epochs): for images, labels in train_loader: # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() # Evaluate the model on test set with torch.no_grad(): total = 0 correct = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = correct / total # Print the accuracy for each epoch print('Epoch [{}/{}], Accuracy: {:.2f}%'.format(epoch+1, num_epochs, accuracy*100)) ``` 在上述代码中,我们首先加载CIFAR-10数据集,并定义一个dataloader。然后,我们定义了模型、损失函数和优化器。接着,我们使用循环进行训练,每个epoch都对整个训练集进行一次遍历。在每个epoch中,我们使用测试集来评估模型的性能,并输出准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值