决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost 和 LightGBM算法的R语言实现

基本逻辑

(1)使用 rnorm 函数生成 5 个特征变量 x1 到 x5,并根据这些特征变量的线性组合生成一个二分类的响应变量 y;

(2)将生成的数据存储在数据框中,处理缺失值,并将响应变量转换为因子类型;

(3)使用决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost 和 LightGBM 六种机器学习模型算法对数据进行训练和评估;

(4)将各个模型的准确率和 AUC 值存储在结果数据框中,并通过柱状图展示结果。

1. R包安装

# 定义要安装的包列表
packages <- c("readxl", "rpart", "e1071", "randomForest", "xgboost", "lightgbm", "pROC", "ggplot2", "RColorBrewer", "reshape2")

# 循环安装每个包
for (pkg in packages) {
  if (!require(pkg, character.only = TRUE)) {
    install.packages(pkg)
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信与基因组学

每一份鼓励是我坚持下去动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值