22.01.12

今天感觉不是很在状态,卡了好几个题不会……

今天上午看了会高数

力矩和混合🐓

力矩的结果简单来说就是一个原始法向量(因为按模板可以直接求得这个结果)

这也解决了我高中时期的一个疑问

所以向量aX向量a=零向量(只有零向量与其都垂直)

由此可以推出a//b 由a//b推出aXb=0

由于右手规则的存在使得交换律对力矩不成立

力矩模长等于底面平行四边形(简写)的面积

应用:求空间三角形面积

至于混合🐓,应用就多了点

就是力矩与一个向量的向量积

能用来判断三向量是否共面(共面 则积为0)并且是充要条件

应用:已知空间四点求四面体体积

以这四点为平行四面体的体积的一半(柱体)的三分之一(椎体)就是答案

以某一点到另外三点混合机的1/6

今天下午本来是想搞java入门的

跟着几个视频配了一下环境

用记事本和cmd敲感觉效率不高,而且软件下载速度也太慢了🙃

 只了解了一些基本知识,

一个文件能有多个class   每个class生成1个文件

public只能有一个,而且类名与文件名相同

下午本来是想去学动态规划的,但是看到了几个题之后我觉得我还得去补补基础……

博主链接

思考不难,实现就有点难了

两个指针暴力遍历数组用substr截取,但是不知道怎么实现去重,就卡在这里了

很明显,一般数组方法不能满足需求

很明显,这个题得能够区分是否为重复子串

set不满足要求,而map可以说是一种以任意类型的数据为下标的一种特殊数组

刚好可以满足要求,用map居然这么简单,果然多一种方法多一分胜算

#include<iostream>
#include<algorithm>
#include<functional>
#include<set>
#include<map>
using namespace std;
#define MAXN 10000010
//int a[2][MAXN];

map <string,int>a;
string sc;
int main()
{
    cin>>sc;
    int sum=0;
    int i,j;
    int temp=sc.length();
    for(i=1;i<temp;i++)
    {
        for(j=0;j<=temp;j++)//左闭右开
        {
            string t=sc.substr(j,i);
            if(!a[t])
            {
                sum++;
                a[t]=1;
            }
        }
    }
    cout<<sum;

 return 0;

}


然后又在蓝桥上看到了这样一个题

我寻思这不是刚做过吗

好吧O(n^2)必定超时……

 凡凡诚不我欺

算法千奇百怪!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值