一、训练准备
素材规范
- 收集:100-200张1024×768像素的清晰图片。
- 主体要求:占画面70%以上,包含多角度/多表情/多动作样本,避免重复构图。
- 获取方式:建议使用专业摄影设备或游戏引擎渲染获取高精度素材。
数据处理
- 标注:使用阿里云百炼平台的智能标注工具自动生成自然语言描述。
- 人物类模型:需包含正脸、侧脸、半身、全身等多样化角度。
- 视频类模型:需准备10-15秒短视频片段(建议25fps)。
二、环境配置
硬件要求
- 最低配置:NVIDIA RTX 3060(8G显存)
- 推荐配置:RTX 4090(24G显存),支持
batch_size=4
训练
框架选择
- 基础模型:WanX-2.1-T2V (
huggingface.co/Wan-AI/W
) - 训练工具:阿里云百炼平台或本地部署的SD-Trainer_WD1.4
三、参数配置
# 推荐参数组合(角色类模型)
{
"learning_rate": 1e-4, # 初始学习率
"optimizer": "Prodigy", # 神童优化器
"batch_size": 2, # 8G显存建议值
"max_train_steps": 800, # 视频模型增加至1200步
"rank": 128, # 平衡效果与显存消耗
"text_encoder_lr": 5e-5, # 文本编码器独立学习率
"resolution": 768 # 与素材分辨率匹配
}
四、训练执行模式选择
- 标准模式:完整训练周期约45分钟(8G显存)
- 极速模式:使用百炼平台的
trainfree
功能,10分钟内完成适配
注意事项
- 视频模型需启用
motion_module
保持动作连贯。 - 复杂物理效果训练时增加碰撞、流体等特效样本。
- 每100步保存检查点防止训练中断。
五、模型测试
基础验证
"巴洛克风格宫殿内,穿燕尾服的舞者随华尔兹旋转,镜头稳定跟随"
- 验证物理碰撞与镜头运动。
进阶测试
- 使用XYZ图表对比不同学习率下的生成效果。
- 添加
negative_prompt
排除训练缺陷,如:“畸变肢体|不自然阴影”。
六、部署应用
通过阿里云百炼API快速接入:
from wanx_models import T2VLoRA
model = T2VLoRA.from_pretrained("WanX-2.1", lora_path="custom_lora.safetensors")
video = model.generate("精灵弓箭手林间射箭,箭矢轨迹带光效", duration=12)
商业应用建议
- 风格迁移插件:保留品牌视觉特征。
- 实时渲染加速模块:提升4K输出效率。
注意事项
- 最新版WanX-2.1支持多LoRA组合使用,可通过叠加不同风格模型实现更复杂特效。
- 训练过程中建议开启平台的显存优化模式防止OOM错误。