用简答的例子,详解deepseek整体推理过程
DeepSeek 是一个基于 Transformer 架构的深度学习模型,通常用于自然语言处理任务(如文本生成、分类等)。以下是简单的例子,帮助小白理解 DeepSeek 的整体推理过程。
示例任务
假设我们有一个训练好的 DeepSeek 模型,任务是生成一段文本。输入是一个句子:
输入:
"今天天气很好,我们"
目标:
生成接下来的文本,例如 "去公园散步。"
DeepSeek 的推理过程
- 输入预处理
分词: 将输入句子分词为 token(如字、词或子词)。例如:
["今天", "天气", "很好", ",", "我们"]
转换为 ID: 将每个 token 转换为模型词汇表中的对应 ID。例如:
[101, 202, 303, 404, 505]
添加特殊 token: 在输入前后添加特殊 token(如 [BOS] 和 [EOS]):
[0, 101, 202, 303, 404, 505, 1]
其中,0 是 [begin of sentence],1 是 [end of sentence],此时输入维度为[1,7],1表示batch number,7表示token number。
- 输入嵌入
Token Embedding: 将每个 token ID 转换为固定维度的向量(如 768 维)。
Position Embedding: 为每个 token 添加位置编码,以表示其在序列中的位置。
Segment Embedding(可选): 如果输入包含多个句子,可以为每个句子添加 segment 编码。
最终输入表示: 将上述嵌入相加,得到模型的输入表示:
[E0, E1, E2, E3, E4, E5, E6]
其中,E0 是 [BOS] 的嵌入,E1 是 “今天” 的嵌入,依此类推。此时维度为[1, 7, 768]。
- Transformer 编码
多层 Transformer 块: 输入表示通过多个 Transformer 块(如 12 层)进行处理。每个块包括:
自注意力机制: 计算每个 token 与其他 token 的关系。
前馈神经网络: 对每个 token 进行非线性变换。
输出表示: 经过所有 Transformer 块后,得到每个 token 的上下文相关表示:
[H0, H1, H2, H3, H4, H5, H6]
- 解码生成
初始输入: 使用输入句子的最后一个 token 的表示(如 H5)作为解码器的初始输入。
自回归生成:
在每个时间步,解码器预测下一个 token 的概率分布。假如词汇表有130k个,则生成130k的概率分布。
选择概率最高的 token 作为输出,并将其作为下一个时间步的输入。
示例生成过程:
输入 H5,预测下一个 token 为 "去"。
输入 "去",预测下一个 token 为 "公园"。
输入 "公园",预测下一个 token 为 "散步"。
输入 "散步",预测下一个 token 为 "。"。
生成结束。
- 输出后处理
转换为文本: 将生成的 token ID 转换回文本:
["去", "公园", "散步", "。"]
拼接结果: 将生成的文本拼接为最终输出:
"去公园散步。"
- 整体流程总结
输入预处理: 分词、转换为 ID、添加特殊 token。
输入嵌入: Token Embedding + Position Embedding + Segment Embedding。
Transformer 编码: 多层自注意力和前馈神经网络处理。
解码生成: 自回归生成下一个 token。
输出后处理: 将生成的 token 转换为文本。
代码示例(简化版)
以下是一个简化的伪代码示例,展示 DeepSeek 的推理过程:
# 假设模型和 tokenizer 已加载
model = load_deepseek_model()
tokenizer = load_deepseek_tokenizer()
# 输入句子
input_text = "今天天气很好,我们"
# 1. 输入预处理
input_ids = tokenizer.encode(input_text) # 分词并转换为 ID
input_ids = [0] + input_ids + [1] # 添加特殊 token
# 2. 输入嵌入
input_embeddings = model.embed(input_ids)
# 3. Transformer 编码
hidden_states = model.transformer(input_embeddings)
# 4. 解码生成
output_ids = []
current_input = hidden_states[-1] # 使用最后一个 token 的表示
for _ in range(max_length): # 最大生成长度
next_token_logits = model.decode(current_input)
next_token_id = torch.argmax(next_token_logits).item()
output_ids.append(next_token_id)
if next_token_id == 1: # 遇到 [EOS] 结束
break
current_input = model.embed([next_token_id])
# 5. 输出后处理
output_text = tokenizer.decode(output_ids)
print("生成结果:", output_text)
总结
DeepSeek 的推理过程包括输入预处理、嵌入、Transformer 编码、解码生成和输出后处理。通过自回归生成,模型能够逐步生成连贯的文本。
参考:deepseek