用简答的例子,详解deepseek整体推理过程

用简答的例子,详解deepseek整体推理过程


DeepSeek 是一个基于 Transformer 架构的深度学习模型,通常用于自然语言处理任务(如文本生成、分类等)。以下是简单的例子,帮助小白理解 DeepSeek 的整体推理过程。

示例任务

假设我们有一个训练好的 DeepSeek 模型,任务是生成一段文本。输入是一个句子:
输入:

"今天天气很好,我们"

目标:

生成接下来的文本,例如 "去公园散步。"

DeepSeek 的推理过程

  1. 输入预处理
    分词: 将输入句子分词为 token(如字、词或子词)。例如:
["今天", "天气", "很好", ",", "我们"]

转换为 ID: 将每个 token 转换为模型词汇表中的对应 ID。例如:

[101, 202, 303, 404, 505]

添加特殊 token: 在输入前后添加特殊 token(如 [BOS] 和 [EOS]):

[0, 101, 202, 303, 404, 505, 1]

其中,0 是 [begin of sentence],1 是 [end of sentence],此时输入维度为[1,7],1表示batch number,7表示token number。

  1. 输入嵌入
    Token Embedding: 将每个 token ID 转换为固定维度的向量(如 768 维)。

Position Embedding: 为每个 token 添加位置编码,以表示其在序列中的位置。

Segment Embedding(可选): 如果输入包含多个句子,可以为每个句子添加 segment 编码。

最终输入表示: 将上述嵌入相加,得到模型的输入表示:

[E0, E1, E2, E3, E4, E5, E6]

其中,E0 是 [BOS] 的嵌入,E1 是 “今天” 的嵌入,依此类推。此时维度为[1, 7, 768]。

  1. Transformer 编码
    多层 Transformer 块: 输入表示通过多个 Transformer 块(如 12 层)进行处理。每个块包括:

自注意力机制: 计算每个 token 与其他 token 的关系。

前馈神经网络: 对每个 token 进行非线性变换。

输出表示: 经过所有 Transformer 块后,得到每个 token 的上下文相关表示:

[H0, H1, H2, H3, H4, H5, H6]
  1. 解码生成
    初始输入: 使用输入句子的最后一个 token 的表示(如 H5)作为解码器的初始输入。

自回归生成:

在每个时间步,解码器预测下一个 token 的概率分布。假如词汇表有130k个,则生成130k的概率分布。

选择概率最高的 token 作为输出,并将其作为下一个时间步的输入。

示例生成过程:

输入 H5,预测下一个 token 为 "去"。

输入 "去",预测下一个 token 为 "公园"。

输入 "公园",预测下一个 token 为 "散步"。

输入 "散步",预测下一个 token 为 "。"

生成结束。

  1. 输出后处理
    转换为文本: 将生成的 token ID 转换回文本:
["去", "公园", "散步", "。"]

拼接结果: 将生成的文本拼接为最终输出:

"去公园散步。"
  1. 整体流程总结
    输入预处理: 分词、转换为 ID、添加特殊 token。

输入嵌入: Token Embedding + Position Embedding + Segment Embedding。

Transformer 编码: 多层自注意力和前馈神经网络处理。

解码生成: 自回归生成下一个 token。

输出后处理: 将生成的 token 转换为文本。

代码示例(简化版)

以下是一个简化的伪代码示例,展示 DeepSeek 的推理过程:

# 假设模型和 tokenizer 已加载
model = load_deepseek_model()
tokenizer = load_deepseek_tokenizer()

# 输入句子
input_text = "今天天气很好,我们"

# 1. 输入预处理
input_ids = tokenizer.encode(input_text)  # 分词并转换为 ID
input_ids = [0] + input_ids + [1]  # 添加特殊 token

# 2. 输入嵌入
input_embeddings = model.embed(input_ids)

# 3. Transformer 编码
hidden_states = model.transformer(input_embeddings)

# 4. 解码生成
output_ids = []
current_input = hidden_states[-1]  # 使用最后一个 token 的表示
for _ in range(max_length):  # 最大生成长度
    next_token_logits = model.decode(current_input)
    next_token_id = torch.argmax(next_token_logits).item()
    output_ids.append(next_token_id)
    if next_token_id == 1:  # 遇到 [EOS] 结束
        break
    current_input = model.embed([next_token_id])

# 5. 输出后处理
output_text = tokenizer.decode(output_ids)
print("生成结果:", output_text)

总结

DeepSeek 的推理过程包括输入预处理、嵌入、Transformer 编码、解码生成和输出后处理。通过自回归生成,模型能够逐步生成连贯的文本。

参考:deepseek

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LivingStone31

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值