《PullNet:迭代检索知识图谱和文本语料进行开放域问答》论文嚼读

这篇论文提出了PullNet模型,通过迭代检索知识图谱和文本语料来解决开放域问答问题。PullNet能自主学习检索相关子图,并结合异构信息进行答案推理。实验结果显示,PullNet在多跳问题上表现出优越性能,特别是在不完整的知识库和文本语料情况下。
摘要由CSDN通过智能技术生成

在这里插入图片描述

题目: PullNet: Open Domain Question Answering with Iterative Retrieval on Knowledge Bases and Text

来源: EMNLP 2019

链接: https://arxiv.org/pdf/1904.09537.pdf


Introduction:

如今开放域问答的一个主流方法,利用维基百科和结构化知识图谱两者的结合来完成问答。目前比较好的思想是早期融合(early fusion)和后期融合(late fusion)的模型,并且已知前者是优于后者的。
然而,这些模型(主要指早期融合(early fusion)的GRAFT-net,这也是该作者的前一篇优秀工作,已有其它人对此工作进行解读-参考)在抽取子图时都是采用启发式规则的检索方法,该法并不显得智能化,会产生一些与答案无关或者答案无需利用到的子图。
而本文关注的重点就在于“学会自主检索”,即让模型自己懂得该(从 K B KB KB、文本语料)检索什么。文本称此为 “ P u l l ” “Pull” Pull操作。
自然地,另一个重点就在于“如何更好地组合这些异构信息”为单个数据结构来更好的推理出答案。


Contribution:

  1. 本文提出新的思想“Pull”,能够智能化扩充问题子图,即自主学习利用此操作抽取得问题相关的子图;
  2. 组合前一步得到的异构信息”,更新子图,最后利用GCN对节点进行表示学习,进而分类判断是否答案。

Model:

任务介绍:

给定问题 q q q,模型从知识图谱和文本语料两类知识源中检索得相关信息,构建出能用以回答的问题子图。

G n = { ν , ε } G_n=\{\nu, \varepsilon \} Gn={ ν,ε}:问题 q q q的子图,也称为异构图,包含了与问题相关的文本语料和知识图谱的信息。 ν \nu ν为节点集合。

ν = ν e ∪ ν d ∪ ν f \nu=\nu_e \cup \nu_d \cup \nu_f ν=νeνdνf:其中 ν e \nu_e νe为实体节点集, ν d \nu_d νd为文本节点集, ν f \nu_f νf为事实节点集

单个实体节点: v e ∈ ν e v_e \in \nu_e veνe,源自 K B KB KB

单个文本节点: v d = { w 1 , . . . , w ∣ d ∣ } v_d=\{w_1, ..., w_{|d|}\} vd={ w1,...,wd} v d ∈ ν d v_d \in \nu_d vdνd,在本文中单个句子即为一个文本,源自Text Corpus

单个事实节点: v f = ( v s , r , v 0 ) , v f ∈ ν f , { v s , v 0 } ∈ ν e v_f = (v_s, r, v_0), v_f \in \nu_f, \{v_s,v_0\} \in \nu_e vf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值