YOLOv8是一种计算机视觉领域中广泛使用的目标检测算法。最新版本的YOLOv8在之前版本的基础上进行了一系列的优化,其中一个重要的优化点是引入了EMA(Exponential Moving Average,指数移动平均)注意力机制。本文将详细解读YOLOv8新版本的优化点,并提供相应的源代码。
-
YOLOv8的优化点:
YOLOv8在之前版本的基础上进行了以下优化:- 网络结构改进:YOLOv8采用了更深的网络结构,引入了更多的卷积层和残差连接,以提升网络的表达能力和检测性能。
- 数据增强策略:引入了更多的数据增强策略,如随机裁剪、旋转、缩放等,以增加数据的多样性,提高模型的鲁棒性和泛化能力。
- 分类损失加权:通过对不同类别的目标设置不同的分类损失权重,使模型更加关注小目标和难分类的目标,提高对小目标的检测效果。
- EMA注意力机制:引入了EMA注意力机制,利用目标的历史预测结果对当前帧的目标进行加权融合,提高目标检测的稳定性和准确性。
-
EMA注意力机制的原理:
EMA注意力机制是基于指数移动平均的思想,通过对历史帧的目标预测结果进行加权融合,给予历史帧中稳定出现的目标更高的权重,从而提高目标检测的鲁棒性和准确性。下面是使用EMA注意力机制进行目标检测