关于欧拉函数积性的问题

Proposition 若 ( m , n ) = 1 \text{Proposition 若}(m,n)=1 Proposition (m,n)=1,那么 φ ( m n ) = φ ( m ) φ ( n ) . \varphi(mn)=\varphi(m)\varphi(n). φ(mn)=φ(m)φ(n).
首先中国剩余定理断言
x ≡ a ( m o d m ) x ≡ b ( m o d n ) \begin{array}{cc}x\equiv a& \pmod{m}\\x\equiv b& \pmod{n}\end{array} xaxb(modm)(modn)
有解,现在证明其解具有唯一性.
lemma 1 \text{lemma 1} lemma 1 ( m , n ) = 1 (m,n)=1 (m,n)=1,则上面方程在模 m n mn mn上有唯一解.
证明:
x = s 1 m n + t 1 , x = s 2 m n + t 2 x=s_1mn+t_1,x=s_2mn+t_2 x=s1mn+t1,x=s2mn+t2,于是
( s 1 − s 2 ) m n + ( t 1 − t 2 ) ≡ t 1 − t 2 ≡ 0 ( m o d m n ) (s_1-s_2)mn+(t_1-t_2)\equiv t_1-t_2\equiv 0\pmod{mn} (s1s2)mn+(t1t2)t1t20(modmn).
从而 t 1 ≡ t 2 ( m o d m n ) t_1\equiv t_2\pmod{mn} t1t2(modmn).
lemma 2 \text{lemma 2} lemma 2 ϕ : Z m × Z n → Z m n \phi:Z_m\times Z_n \to Z_{mn} ϕ:Zm×ZnZmn, ϕ ( a , b ) = c \phi(a,b)=c ϕ(a,b)=c, c c c是上面同余方程组给出的解,有若 a ∈ U ( Z m ) , b ∈ U ( Z n ) , 当 且 仅 当 c ∈ U ( Z m n ) . a\in U(Z_m),b\in U(Z_n),当且仅当c\in U(Z_{mn}). aU(Zm),bU(Zn),cU(Zmn).
证明:
由中国剩余定理 c = n p a + m q b = n x ( 1 ) + m x ( 2 ) , 其 中 p n = s m + 1 , q m = t n + 1 c=npa+mqb=nx^{(1)}+mx^{(2)},其中pn=sm+1,qm=tn+1 c=npa+mqb=nx(1)+mx(2),pn=sm+1,qm=tn+1.
首先证明 n x ( 1 ) = n p a nx^{(1)}=npa nx(1)=npa遍历模 m m m剩余系,由 p p p显然是 Z m Z_m Zm n n n的逆元,这必然是存在的,因为 ( m , n ) = 1 (m,n)=1 (m,n)=1.于是 n p ≡ 1 np\equiv 1 np1, a a a取遍 0 ∼ m − 1 0\sim m-1 0m1,从而 n x ( 1 ) nx^{(1)} nx(1)取遍 Z m Z_m Zm,事实上 n n n是常数,所以 x ( 1 ) x^{(1)} x(1)取遍 Z m Z_m Zm.同理 x ( 2 ) x^{(2)} x(2)取遍 Z n Z_n Zn.
于是 x ( 1 ) x^{(1)} x(1)取遍 U ( Z m ) U(Z_m) U(Zm). x ( 2 ) x^{(2)} x(2)取遍 U ( Z n ) U(Z_n) U(Zn).
a ∈ U ( Z m ) , b ∈ U ( Z n ) a\in U(Z_m),b\in U(Z_n) aU(Zm),bU(Zn),则 ( n a + m b , m n ) = 1 (na+mb,mn)=1 (na+mb,mn)=1当且仅当 ( n a + m b , m ) = ( n a + m b , n ) = 1 (na+mb,m)=(na+mb,n)=1 (na+mb,m)=(na+mb,n)=1,这是显然的,所以 ϕ ( a , b ) : U ( Z m ) × U ( Z n ) → U ( Z m n ) \phi(a,b):U(Z_m)\times U(Z_n)\to U(Z_{mn}) ϕ(a,b):U(Zm)×U(Zn)U(Zmn)是双射.

映射两边集合元素个数相等,所以 φ ( m n ) = φ ( m ) φ ( n ) \varphi(mn)=\varphi(m)\varphi(n) φ(mn)=φ(m)φ(n).

利用初等数论的剩余类理论也可以得到相同的结果.
并且需要指出的是,即使不知晓如何证明,也应该记住这个结论.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值