偏度系数:描述分布偏离对称性程度的一个特征数。当分布左右对称时,偏度系数为0;当偏度系数大于0时,即重尾在右侧时,称该分布为右偏(正偏态);当偏度系数小于0,即重尾在左侧时,称该分布为左偏(负偏态)。
定义:
设随机变量
X
X
X的三阶矩存在,则称三阶中心矩除以标准差的三次方为的偏度系数。偏度系数用以描述正态分布的分布形状特征。
使用标准差为单位计量的偏度系数
S
K
=
x
ˉ
−
M
0
σ
∈
(
−
3
,
3
)
SK = \frac{\bar{x}-M_{0}}{\sigma} \in (-3,3)
SK=σxˉ−M0∈(−3,3)
M
0
M_{0}
M0:众数;
σ
\sigma
σ: 标准偏差
利用三阶中心矩计算偏度系数的公式:
α
=
μ
3
σ
3
\alpha=\frac{\mu^{3}}{\sigma^{3}}
α=σ3μ3
用文字表述即:
(
三
阶
中
心
矩
标
准
差
)
3
{(\frac{三阶中心矩}{标准差})}^{3}
(标准差三阶中心矩)3
偏态系数,又称为偏差系数。
定义:根据众数、中位数与均值各自的性值,通过比较众数或中位数与均值来衡量偏斜度,是对分布偏斜方向和程度的刻画。
Pearson以公式(如下):
平
均
值
−
中
位
数
标
准
差
\frac{平均值-中位数}{标准差}
标准差平均值−中位数衡量偏斜的程度(偏斜率),用
S
K
SK
SK表示偏斜系数。
偏态系数的计算需要百年以上的资料和数据。“统计学”中,偏态公式指的是用于计算曲线偏离正态曲线程度的公式。
口 简单偏态系数的计算公式:
S
K
=
∑
(
x
−
x
ˉ
)
3
σ
3
×
N
SK=\frac{\sum(x-\bar{x})^{3}}{\sigma^{3}×N}
SK=σ3×N∑(x−xˉ)3
口 加权偏态系数:
S
K
=
∑
(
x
−
x
ˉ
)
3
F
σ
3
×
∑
F
SK=\frac{\sum(x-\bar{x})^{3F}}{\sigma^{3}×\sum F}
SK=σ3×∑F∑(x−xˉ)3F
口 偏态系数:
1)0:对称分布;
2)>0: 正偏态(右偏)
3)<0:负偏态(左偏)
看完上面,是不是发现偏度系数和偏态系数非常相像呢?于是我请教了一位浙大数学博士,她给出的答案是:偏度系数,偏斜系数,偏态系数的差别不大,都是衡量skew,核心是都用到三阶矩。另,不同的人做不同的研究,给出的定义不一样。