线性规划作为运筹学的一个重要分支,是研究较早、理论较完善、应用最广泛的一个学科。它所研究的问题主要包括两个方面:
1.是在一项任务确定后,如何以最低成本(如人力、物力、资金和时间等)去完成这一任务;
2.是如何在现有资源条件下进行组织和安排,以产生最大收益。
线性规划模型的建立
例1 某军工厂生产甲、乙、丙三种产品,生产三种产品需要A、B两种资源,其单位需求量及利润由下表1给出,问每天生产甲、乙、丙三种产品各多少,可使总利润最大?
第一步:假设每天生产甲、乙、丙三种产品各x1,x2 ,x3件可使总利润最大
第二步:建立目标函数
Max z =40x1+45x2 +24x3
第三步:寻找约束条件
例2(营养问题)某部队需要购买A、B二食品,已知食品含有的人体每日必须的营养成份元素1、2、3的多少及每日该三种营养成份每日必需量如下表,试问该部队应如何制定选购食品的计划,使得在满足要求的情况下总的费用最少。
总结线性规划模型建立的步骤:
1.假设决策变量;
2.建立目标函数;
3.寻找约束条件。
线性规划的标准形式
一、线性规划模型的一般形式与规范形式
(1)每一个问题都用一组决策变量(x1,x2,…,xn)表示某一方案,这组决策变量的值就代表一个具体方案,一般这些变量取值是非负的。
(2)存在一定的约束条件,这些约束条件可以用一组线性等式或线性不等式来表示。
(3)都有一个要求达到的目标,它可用决策变量的线性函数(称为目标函数)来表示,按问题的不同,要求目标函数实现最大化或最小化。
满足以上3个条件的数学模型称为线性规划的数学模型。
因此,我们将约束条件及目标函数都是决策变量的线性函数的规划问题称为线性规划。有时也将线性规划问题简记为LP(linear programming)。
二、线性规划的标准形式