规划问题的分类
- 线性规划
- 整数规划
- 非线性规划
- 多目标规划
- 动态规划
规划问题的三要素
决策变量
目标函数
约束条件
线性规划模型的数学表示
线性规划模型的标准形式
1.最小化目标函数
PS:
最大化目标函数可以添加负号变成最小化目标函数
2.小于等于约束
PS:
<1>大于等于约束可以添加负号变成小于等于约束
<2>等于约束可以直接写入编程
线性规划模型的求解方法
1.图解法
2.单纯形法
超平面:一个线性方程是一个超平面
半空间:超平面划分出来的两个半空间
多胞形:若干个半空间的交集,又被称为可行域
多面体:有界的多胞形称为多面体
结论:线性规划的最优解一定在可行域的边界上。
单纯形法的思路就是在可行域的一个顶点处找到一个初始可行解,判断该解是不是最优,若不是,则迭代到下一个顶点处进行重复判断。因为最优解的搜索范围从整个可行域缩小到了可行域的有限个顶点,算法的效率得到了极大的提升。
3.其他方法
求解线性规划的方法还有椭球法、卡玛卡算法、内点法等。