数据可视化笔记8 层次数据可视化

1.层次数据的概念

• 层次数据着重表现个体之间的层次关系,具有自底向上或自顶向下的层次结构
– 自然世界和社会关系中的包含和从属关系
– 组织信息
• 文件列表
• 物种发展
– 逻辑承接关系
• 决策树
在这里插入图片描述
六大计算机公司的组织结构图,生动地反映了独特的企业文化:亚马逊有严格的等级制度;谷歌也有清晰的等级,但部门之间相互交错,由google的三驾马车CEO埃里克·施密特(Eric Schmidt)、 Google联合创始人拉里·佩奇(Larry Page)和塞吉·布林(Sergey Brin)共同领导;Facebook像一张分布式网络;微软各自占山为王,且相互竞争;苹果是各小团队相互平等灵活作战,但乔布斯的作用非常明显;甲骨文法务部门远大于工程部门
在这里插入图片描述

物种发展
这棵树清晰地呈现了不同物种之间的遗传关系,所有物种通过生物发展史的基因链接关系相连。 本数据包含93891个物种,占今天地球上的1亿物种的极小部分。根节点"Life on Earth’’ (红色字体)被置于树的 西南角,它的西南方向链接了``Green plants’’(绿色植物,绿色)分支,东南方向链接了’‘Protista’’(原生动物, 淡红色)分支,西北方向链接的是’‘Fungi’’(菌类,黄色)分支。
在这里插入图片描述

2.层次数据可视化

节点链接法
概念;将单个个体绘制成一个节点,节点之间的连线表示个体之间的层次关系
代表技术:节点链接树、三维树
空间填充法
概念:用空间中的分块区域表示数据中的个体,并用外层区域对内层区域的包围表示彼此之间的层次关系
代表技术:树图(Treemap)、维诺图(Voronoi)
混合型
以上两种思路的综合使用

节点链接法

一般需要考虑的问题:
节点位置的空间顺序与层次关系一致
减少连线之间的交叉
减少连线的总长度
可视化应该有合适的长宽比,以优化空间的利用
在这里插入图片描述
节点链接法的布局
正交布局:节点在放置的时候都按照水平或垂直对齐
缩进图(indent)
聚类树(dendrogram)
冰柱图(icicle)
径向布局(辐射型):根节点位于圆心,不同层次节点放置在半径不同的同心圆上
径向布局图(Radial layout)
双曲树(Hyperbolic tree)

在这里插入图片描述在这里插入图片描述

正交布局
• 节点在放置的时候都按照水平或垂直对齐
– 电路图例外
• 方向与坐标轴一致的,布局规则
• 与视觉识别习惯吻合,非常直观
• 缺点
– 对于大型的层次结构,特别是广度比较大的层次结 构,这样的布局会导致不合理的长宽比
在这里插入图片描述
H树图:仅对二叉树有较好的效果
在这里插入图片描述
缩进图:主要指在二维平面上用缩进的方式放置子节点,同一层次的节点缩进量相同
快速并易于实现 √
可以使用纯文本(或HTML ) √
浏览大数据时需要很多滚动操作 ×
容易失去上下文 ×
在这里插入图片描述
聚类树
家狗的不同物种的单倍体基因序列的比较分析
在这里插入图片描述
冰柱图:常用于聚类分析,展现层次聚类结果
在这里插入图片描述

径向布局
更加合理地利用空间
• 根节点位于圆心,不同层次的节点被放置在半径不同的同心圆上
• 节点到圆心的距离对应于它的深度
• 满足树结构节点数量随层次而增加的特点
– 与正交分布在每一层上对于空间的分割类似,一个同心圆被划分为不同区间,分别对应于该层不同的节点。由于同心圆的周长随着半径增长,越深的层就有越多的空间来放置节点。满足了树里面节点数量随着层次而增加的特点
在这里插入图片描述

三维树/圆锥树:一种在三维空间可视化层次数据的技术,结合了径向布局和正交布局两种思想
在这里插入图片描述
基本思想:
– 在布局中增加一个维度
– 保留了自顶向下的特性
– 更接近中心的节点更容易被注意到
– 父节点与子节点呈圆锥状排布
– 兄弟节点落在同一个平面上

优点:
– 空间利用更加充分
– 可以使用平滑的动画让用户捕捉到变化
– 美即正义
缺点:
– 3D情景下难以避免节点间相互重叠
– 需要3D渲染,交互情景下难以在移动端保证性能。

空间填充法

矩形树图(Treemaps)
• 20世纪90年代初,为了找到一种有效了解磁盘空间使用情况的方法,马里兰大学人机交互实验室教授Ben Shneiderman和他的团队通过调整树状图,发明了矩形树图。
在这里插入图片描述
用矩形表示节点
假设每个叶节点具有一个“尺寸”属性(例如 磁盘中的文件,或者机构图中的薪水等)
父节点的尺寸是所有子节点尺寸之和
矩形面积的大小通常对应节点的属性,每个矩形又按照相应节点的子节点递归的进行分割,直到叶节点位置。
核心问题:空间的分割方法
在这里插入图片描述
Johnson和Shneiderman在1991年提出交替纵横切分法(slice-and- dice Treemap)
• 布局方法:
– 递归地细分屏幕空间成矩形块
– 整个矩形表示层次化数据中的最高层级(例如文件系统树的根节点,或是所有数据的集合)
– 较低一层的节点根据各自具有的权重(Weight)的比例,划分最高层节点矩形的面积
– 它们的子节点再递归地划分各自的父节点,如此往复直到所有层次都划分完毕

局限:当子节点过多时,交替纵横切分法产生过多的细长的矩形
不同树图布局算法的效果对比
在这里插入图片描述
优点:
1、空间利用比节点链接法好
2、使用颜色和大小来编码
缺点:
1、结构不如节点链接法直接
2、难以辨识深层次节点

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值